scholarly journals Quality of reporting of pilot and feasibility cluster randomised trials: a systematic review

BMJ Open ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. e016970 ◽  
Author(s):  
Claire L Chan ◽  
Clémence Leyrat ◽  
Sandra M Eldridge

ObjectivesTo systematically review the quality of reporting of pilot and feasibility of cluster randomised trials (CRTs). In particular, to assess (1) the number of pilot CRTs conducted between 1 January 2011 and 31 December 2014, (2) whether objectives and methods are appropriate and (3) reporting quality.MethodsWe searched PubMed (2011–2014) for CRTs with ‘pilot’ or ‘feasibility’ in the title or abstract; that were assessing some element of feasibility and showing evidence the study was in preparation for a main effectiveness/efficacy trial. Quality assessment criteria were based on the Consolidated Standards of Reporting Trials (CONSORT) extensions for pilot trials and CRTs.ResultsEighteen pilot CRTs were identified. Forty-four per cent did not have feasibility as their primary objective, and many (50%) performed formal hypothesis testing for effectiveness/efficacy despite being underpowered. Most (83%) included ‘pilot’ or ‘feasibility’ in the title, and discussed implications for progression from the pilot to the future definitive trial (89%), but fewer reported reasons for the randomised pilot trial (39%), sample size rationale (44%) or progression criteria (17%). Most defined the cluster (100%), and number of clusters randomised (94%), but few reported how the cluster design affected sample size (17%), whether consent was sought from clusters (11%), or who enrolled clusters (17%).ConclusionsThat only 18 pilot CRTs were identified necessitates increased awareness of the importance of conducting and publishing pilot CRTs and improved reporting. Pilot CRTs should primarily be assessing feasibility, avoiding formal hypothesis testing for effectiveness/efficacy and reporting reasons for the pilot, sample size rationale and progression criteria, as well as enrolment of clusters, and how the cluster design affects design aspects. We recommend adherence to the CONSORT extensions for pilot trials and CRTs.

BMJ ◽  
2011 ◽  
Vol 343 (sep26 1) ◽  
pp. d5886-d5886 ◽  
Author(s):  
N. M. Ivers ◽  
M. Taljaard ◽  
S. Dixon ◽  
C. Bennett ◽  
A. McRae ◽  
...  

2021 ◽  
pp. 174077452110208
Author(s):  
Elizabeth Korevaar ◽  
Jessica Kasza ◽  
Monica Taljaard ◽  
Karla Hemming ◽  
Terry Haines ◽  
...  

Background: Sample size calculations for longitudinal cluster randomised trials, such as crossover and stepped-wedge trials, require estimates of the assumed correlation structure. This includes both within-period intra-cluster correlations, which importantly differ from conventional intra-cluster correlations by their dependence on period, and also cluster autocorrelation coefficients to model correlation decay. There are limited resources to inform these estimates. In this article, we provide a repository of correlation estimates from a bank of real-world clustered datasets. These are provided under several assumed correlation structures, namely exchangeable, block-exchangeable and discrete-time decay correlation structures. Methods: Longitudinal studies with clustered outcomes were collected to form the CLustered OUtcome Dataset bank. Forty-four available continuous outcomes from 29 datasets were obtained and analysed using each correlation structure. Patterns of within-period intra-cluster correlation coefficient and cluster autocorrelation coefficients were explored by study characteristics. Results: The median within-period intra-cluster correlation coefficient for the discrete-time decay model was 0.05 (interquartile range: 0.02–0.09) with a median cluster autocorrelation of 0.73 (interquartile range: 0.19–0.91). The within-period intra-cluster correlation coefficients were similar for the exchangeable, block-exchangeable and discrete-time decay correlation structures. Within-period intra-cluster correlation coefficients and cluster autocorrelations were found to vary with the number of participants per cluster-period, the period-length, type of cluster (primary care, secondary care, community or school) and country income status (high-income country or low- and middle-income country). The within-period intra-cluster correlation coefficients tended to decrease with increasing period-length and slightly decrease with increasing cluster-period sizes, while the cluster autocorrelations tended to move closer to 1 with increasing cluster-period size. Using the CLustered OUtcome Dataset bank, an RShiny app has been developed for determining plausible values of correlation coefficients for use in sample size calculations. Discussion: This study provides a repository of intra-cluster correlations and cluster autocorrelations for longitudinal cluster trials. This can help inform sample size calculations for future longitudinal cluster randomised trials.


2019 ◽  
Vol 17 (1) ◽  
pp. 69-76
Author(s):  
Andrew J Copas ◽  
Richard Hooper

Background/Aims: Published methods for sample size calculation for cluster randomised trials with baseline data are inflexible and primarily assume an equal amount of data collected at baseline and endline, that is, before and after the intervention has been implemented in some clusters. We extend these methods to any amount of baseline and endline data. We explain how to explore sample size for a trial if some baseline data from the trial clusters have already been collected as part of a separate study. Where such data aren’t available, we show how to choose the proportion of data collection devoted to the baseline within the trial, when a particular cluster size or range of cluster sizes is proposed. Methods: We provide a design effect given the cluster size and correlation parameters, assuming different participants are assessed at baseline and endline in the same clusters. We show how to produce plots to identify the impact of varying the amount of baseline data accounting for the inevitable uncertainty in the cluster autocorrelation. We illustrate the methodology using an example trial. Results: Baseline data provide more power, or allow a greater reduction in trial size, with greater values of the cluster size, intracluster correlation and cluster autocorrelation. Conclusion: Investigators should think carefully before collecting baseline data in a cluster randomised trial if this is at the expense of endline data. In some scenarios, this will increase the sample size required to achieve given power and precision.


Trials ◽  
2013 ◽  
Vol 14 (S1) ◽  
Author(s):  
Clare Rutterford ◽  
Monica Taljaard ◽  
Stephanie Dixon ◽  
Andrew Copas ◽  
Sandra Eldridge

Sign in / Sign up

Export Citation Format

Share Document