scholarly journals Medical treatment of gallstones

1978 ◽  
Vol 16 (18) ◽  
pp. 69-71

Chenodeoxycholic acid (CDCA) (Chendol - Weddel) is one of two naturally occurring ‘primary’ bile acids (the other being cholic acid) made in the liver from cholesterol. CDCA is synthesised commercially from cholic acid and prescribed as gelatin-coated capsules containing 125 mg CDCA.

1979 ◽  
Vol 25 (2) ◽  
pp. 264-268 ◽  
Author(s):  
O Mäentausta ◽  
O Jänne

Abstract We describe a method for radioimmunoassay of conjugated cholic acid, chenodeoxycholic acid, and deoxycholic acid in serum. In the method, 125I-labeled bile acid conjugates are used as the tracers along with antibodies raised against individual bile acid-bovine serum albumin conjugates. Antibody-bound and free bile acids were separated by polyethylene glycol precipitation (final concentration, 125 g/L). Before radioimmunoassay, 0.1-mL serum samples were precipitated with nine volumes of ethanol, and portions from the supernate were used in the assays. The lowest measurable amounts of the bile acids, expressed as pmol/tube, were: cholic acid conjugates, 2; chenodeoxycholic acid conjugates, 0.5; and deoxycholic acid conjugates. 2. Analytical recovery of bile acids added to bile acid-free serum ranged from 85 to 110%; intra-assay and inter-assay CVs ranged from 3.2 to 5.3% and from 5.3 to 12.2%, respectively. Concentrations (mean +/- SD) of the bile acid conjugates in serum from apparently healthy women and men (in mumol/L) were: cholic acid conjugates, 0.43 +/- 0.17 (n = 126); chenodeoxycholic acid conjugates, 0.47 +/- 0.23 (n = 111); and deoxycholic acid conjugates, 0.33 +/- 0.11 (n = 96). The values for primary bile acids were greatly increased in patients with various hepatobiliary diseases.


1976 ◽  
Vol 155 (2) ◽  
pp. 401-404 ◽  
Author(s):  
E S. Haslewood ◽  
G A. D. Haslewood

1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease.


1974 ◽  
Vol 47 (5) ◽  
pp. 425-433
Author(s):  
K. Einarsson ◽  
K. Hellström ◽  
M. Kallner

1. The turnover of [24−14C]cholic acid and [3H]chenodeoxycholic acid and the faecal excretion of neutral steroids were studied in six normolipaemic subjects before and during the ingestion of 1.3–2.6 mmol (0.5–1.0 g) of deoxycholic acid/day. Before the second study the subjects had been fed deoxycholic acid for 2 weeks. 2. The administration of deoxycholic acid did not appear to influence cholesterol metabolism as judged by the absence of change in the serum concentrations and the overall transformation into primary bile acids and neutral faecal steroids. 3. During the deoxycholic acid feeding period the mean total synthesis of bile acids was reduced by about 30%, corresponding to approximately 0.25 mmol (100 mg)/day. In one subject the pool size and in another the synthesis of cholic acid remained unchanged; otherwise the cholic acid pool size and its rate of formation decreased in all subjects. No consistent effects were observed with regard to the turnover of chenodeoxycholic acid. 4. Assuming that the bile acid turnover is equivalent to bile acid excretion then the total amount of cholesterol eliminated as bile acids and neutral faecal steroids averaged between 1.6 and 1.8 mmol/day before and during the administration of deoxycholic acid.


1963 ◽  
Vol 43 (2) ◽  
pp. 305-310 ◽  
Author(s):  
Kjell Hellström ◽  
Ove Strand

ABSTRACT Bile fistula bile from male normal, sham-operated, adrenalectomized and cortisone substituted adrenalectomized rats was analyzed for free and conjugated bile acids. 40–50 per cent of the bile acids from adrenalectomized rats were conjugated with glycine as compared to less than 10 per cent in the other groups. The cortisone substituted adrenalectomized rats showed a lower glycine conjugation than normal rats. In the bile from adrenal-ectomized rats, free cholic acid corresponding to 2–5% of the conjugated bile acids was detected. In the bile from the other groups less than 1% of free cholic acid was found. The mechanism responsible for the abnormal conjugation pattern found in adrenalectomized rats is discussed.


1970 ◽  
Vol 118 (3) ◽  
pp. 519-530 ◽  
Author(s):  
I. W. Percy-Robb ◽  
G. S. Boyd

1. Isolated rat liver was perfused with heparinized whole blood under physiological pressure resulting in the secretion of bile at about the rate observed in vivo. 2. The preparation remained metabolically active for 4h and was apparently normal in function and microscopic appearance. 3. When the perfusate plasma and liver cholesterol pool was labelled by the introduction of [2-14C]mevalonic acid the specific radioactivity of the perfusate cholesterol increased. The biliary acids (cholic acid and chenodeoxycholic acid) were labelled and had the same specific radioactivity. 4. Livers removed from rats immediately after, and 40h after, the start of total biliary drainage, were perfused; increased excretion rates of both cholic acid and chenodeoxycholic acid were found when the liver donors had been subjected to biliary drainage. 5. The incorporation of [2-14C]mevalonic acid or rat lipoprotein labelled with [14C]cholesterol into bile acids was studied. 6. A dissociation between the mass of bile acid excreted and the rate of incorporation of 14C was found. This was attributed to the changing specific radioactivity of the cholesterol pool acting as the immediate bile acid precursor.


2019 ◽  
Vol 151 (6) ◽  
pp. 820-833 ◽  
Author(s):  
Alexandr V. Ilyaskin ◽  
Florian Sure ◽  
Viatcheslav Nesterov ◽  
Silke Haerteis ◽  
Christoph Korbmacher

We recently demonstrated that bile acids, especially tauro-deoxycholic acid (t-DCA), modify the function of the acid-sensing ion channel ASIC1a and other members of the epithelial sodium channel (ENaC)/degenerin (DEG) ion channel family. Surprisingly, ASIC1 shares a high degree of structural similarity with the purinergic receptor P2X4, a nonselective cation channel transiently activated by ATP. P2X4 is abundantly expressed in the apical membrane of bile duct epithelial cells and is therefore exposed to bile acids under physiological conditions. Here, we hypothesize that P2X4 may also be modulated by bile acids and investigate whether t-DCA and other common bile acids affect human P2X4 heterologously expressed in Xenopus laevis oocytes. We find that application of either t-DCA or unconjugated deoxycholic acid (DCA; 250 µM) causes a strong reduction (∼70%) of ATP-activated P2X4-mediated whole-cell currents. The inhibitory effect of 250 µM tauro-chenodeoxycholic acid is less pronounced (∼30%), and 250 µM chenodeoxycholic acid, cholic acid, or tauro-cholic acid did not significantly alter P2X4-mediated currents. t-DCA inhibits P2X4 in a concentration-dependent manner by reducing the efficacy of ATP without significantly changing its affinity. Single-channel patch-clamp recordings provide evidence that t-DCA inhibits P2X4 by stabilizing the channel’s closed state. Using site-directed mutagenesis, we identifiy several amino acid residues within the transmembrane domains of P2X4 that are critically involved in mediating the inhibitory effect of t-DCA on P2X4. Importantly, a W46A mutation converts the inhibitory effect of t-DCA into a stimulatory effect. We conclude that t-DCA directly interacts with P2X4 and decreases ATP-activated P2X4 currents by stabilizing the closed conformation of the channel.


1980 ◽  
Vol 255 (7) ◽  
pp. 2925-2933 ◽  
Author(s):  
Z.R. Vlahcevic ◽  
C.C. Schwartz ◽  
J. Gustafsson ◽  
L.G. Halloran ◽  
H. Danielsson ◽  
...  

1971 ◽  
Vol 123 (1) ◽  
pp. 15-18 ◽  
Author(s):  
G. A. D. Haslewood

1. The bile of germ-free domestic fowl contains taurine conjugates of 3α,7α-dihydroxy-5β-cholan-24-oic acid (chenodeoxycholic acid), 3α,7α,12α-trihydroxy-5β-cholan-24-oic acid (cholic acid) and its 5α-epimer (allocholic acid): that of germ-free pigs contains glycine and taurine conjugates of chenodeoxycholic acid, 3α,6α-dihydroxy-5β-cholan-24-oic acid (hyodeoxycholic acid), 3α,6α,7α-trihydroxy-5β-cholan-24-oic acid (hyocholic acid) and (probably) cholic acid. Keto acids were not found. 2. Allocholic acid and hyodeoxycholic acid are thus proved to be primary bile acids in intact animals. 3. The evolutionary and biochemical implications of these findings are briefly considered.


Sign in / Sign up

Export Citation Format

Share Document