Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy

2009 ◽  
Vol 80 (2) ◽  
pp. 201-206 ◽  
Author(s):  
R H B Benedict ◽  
D Ramasamy ◽  
F Munschauer ◽  
B Weinstock-Guttman ◽  
R Zivadinov
2020 ◽  
Vol 6 (1) ◽  
pp. 205521732090248
Author(s):  
Cecilie Jacobsen ◽  
Robert Zivadinov ◽  
Kjell-Morten Myhr ◽  
Turi O Dalaker ◽  
Ingvild Dalen ◽  
...  

Background Multiple sclerosis is often associated with unemployment. The contribution of grey matter atrophy to unemployment is unclear. Objectives To identify magnetic resonance imaging biomarkers of grey matter and clinical symptoms associated with unemployment in multiple sclerosis patients. Methods Demographic, clinical data and 1.5 T magnetic resonance imaging scans were collected in 81 patients at the time of inclusion and after 5 and 10 years. Global and tissue-specific volumes were calculated at each time point. Statistical analysis was performed using a mixed linear model. Results At baseline 31 (38%) of the patients were unemployed, at 5-year follow-up 44 (59%) and at 10-year follow-up 34 (81%) were unemployed. The unemployed patients had significantly lower subcortical deep grey matter volume ( P < 0.001), specifically thalamus, pallidus, putamen and hippocampal volumes, and cortical volume ( P = 0.011); and significantly greater T1 ( P < 0.001)/T2 ( P < 0.001) lesion volume than the employed patient group at baseline. Subcortical deep grey matter volumes, and to a lesser degree cortical volume, were significantly associated with unemployment throughout the follow-up. Conclusion We found significantly greater atrophy of subcortical deep grey matter and cortical volume at baseline and during follow-up in the unemployed patient group. Atrophy of subcortical deep grey matter showed a stronger association to unemployment than atrophy of cortical volume during the follow-up.


2015 ◽  
Vol 22 (5) ◽  
pp. 608-619 ◽  
Author(s):  
Marita Daams ◽  
Martijn D Steenwijk ◽  
Menno M Schoonheim ◽  
Mike P Wattjes ◽  
Lisanne J Balk ◽  
...  

Background: Cognitive deficits are common in multiple sclerosis. Most previous studies investigating the imaging substrate of cognitive deficits in multiple sclerosis included patients with relatively short disease durations and were limited to one modality/brain region. Objective: To identify the strongest neuroimaging predictors for cognitive dysfunction in a large cohort of patients with long-standing multiple sclerosis. Methods: Extensive neuropsychological testing and multimodal 3.0T MRI was performed in 202 patients with multiple sclerosis and 52 controls. Cognitive scores were compared between groups using Z-scores. Whole-brain, white matter, grey matter, deep grey matter and lesion volumes; cortical thickness, (juxta)cortical and cerebellar lesions; and extent and severity of diffuse white matter damage were measured. Stepwise linear regression was used to identify the strongest predictors for cognitive dysfunction. Results: All cognitive domains were affected in patients. Patients showed extensive atrophy, focal pathology and damage in up to 75% of the investigated white matter. Associations between imaging markers and average cognition were two times stronger in cognitively impaired patients than in cognitively preserved patients. The final model for average cognition consisted of deep grey matter DGMV volume and fractional anisotropy severity (adjusted R²=0.490; p<0.001). Conclusion: From all imaging markers, deep grey matter atrophy and diffuse white matter damage emerged as the strongest predictors for cognitive dysfunction in long-standing multiple sclerosis.


2007 ◽  
Vol 13 (7) ◽  
pp. 880-883 ◽  
Author(s):  
Y. Zhang ◽  
RK Zabad ◽  
X. Wei ◽  
LM Metz ◽  
MD Hill ◽  
...  

T2 hypointensity (black T2, BT2) in the deep grey matter of multiple sclerosis (MS) patients correlate weakly with disability at 1.5 T. BT2 is likely to be caused by abnormal iron deposition. We compared the correlation between disability and deep grey matter BT2 measured on 3 T MRI and on 1.5 T MRI in 17 MS patients. We observed a significant correlation between expanded disability status scale and signal intensity on 3 T MRI in the globus pallidus and the caudate nucleus ( r = —0.5, P < 0.05). BT2 at 3 T may be a useful MRI measure associated with disability in MS and warrants further study. Multiple Sclerosis 2007; 13: 880—883. http://msj.sagepub.com


2011 ◽  
Vol 48 (14) ◽  
pp. 1727
Author(s):  
I. Huitinga ◽  
C. van Eden ◽  
K. Fluiter ◽  
B.P. Morgan ◽  
F. Baas ◽  
...  

2021 ◽  
pp. 135245852110189
Author(s):  
Silvia Messina ◽  
Romina Mariano ◽  
Adriana Roca-Fernandez ◽  
Ana Cavey ◽  
Maciej Jurynczyk ◽  
...  

Background: Identifying magnetic resonance imaging (MRI) markers in myelin-oligodendrocytes-glycoprotein antibody-associated disease (MOGAD), neuromyelitis optica spectrum disorder-aquaporin-4 positive (NMOSD-AQP4) and multiple sclerosis (MS) is essential for establishing objective outcome measures. Objectives: To quantify imaging patterns of central nervous system (CNS) damage in MOGAD during the remission stage, and to compare it with NMOSD-AQP4 and MS. Methods: 20 MOGAD, 19 NMOSD-AQP4, 18 MS in remission with brain or spinal cord involvement and 18 healthy controls (HC) were recruited. Volumetrics, lesions and cortical lesions, diffusion-imaging measures, were analysed. Results: Deep grey matter volumes were lower in MOGAD ( p = 0.02) and MS ( p = 0.0001), compared to HC and were strongly correlated with current lesion volume (MOGAD R = −0.93, p < 0.001, MS R = −0.65, p = 0.0034). Cortical/juxtacortical lesions were seen in a minority of MOGAD, in a majority of MS and in none of NMOSD-AQP4. Non-lesional tissue fractional anisotropy (FA) was only reduced in MS ( p = 0.01), although focal reductions were noted in NMOSD-AQP4, reflecting mainly optic nerve and corticospinal tract pathways. Conclusion: MOGAD patients are left with grey matter damage, and this may be related to persistent white matter lesions. NMOSD-AQP4 patients showed a relative sparing of deep grey matter volumes, but reduced non-lesional tissue FA. Observations from our study can be used to identify new markers of damage for future multicentre studies.


Sign in / Sign up

Export Citation Format

Share Document