neuronal damage
Recently Published Documents


TOTAL DOCUMENTS

2443
(FIVE YEARS 779)

H-INDEX

108
(FIVE YEARS 12)

2022 ◽  
Vol 12 (3) ◽  
pp. 551-557
Author(s):  
Zhen Liu ◽  
Canfang Hu ◽  
Dingzhong Tang ◽  
Guojun Luo

Alzheimer’s disease (AD) is a neurodegenerative disease with memory loss and cognitive impairment. Short non-coding RNAs (miRNAs) are potential biomarkers and therapeutic targets for AD. This study aims to investigate miR-129’s role in AD. miR-129 and amyloid precursor protein (APP) expression was measured by Q-PCR, and LC3, p62, ATG5, Bcl-2, p-Tau and Caspase3 protein was detected by Western blot. Hydrogenase kits and DCFH-DA detected cell apoptosis, cytotoxicity and ROS generation. The interaction between APP and miR-129 was assessed by luciferase report experiment. HE staining and TUNEL assay evaluated hippocampal neuron damage. In AD patient serum, AD transgenic (TG) mouse brain tissue, and AB1-42-treated SH-SY5Y cells, miR-129 was downregulated but autophagy was increased. Overexpression of miR-129 reduced cell damage induced by AB1-42, and miR-129 can directly regulate APP expression by binding APP 3′-UTR. miR-129 inhibitors reversed the protective effect of shAPP on AB1-42-induced cell damage. In addition, miR-129 overexpression reduced neuronal damage through inhibiting autophagy in vivo. APP expression in AD patient and AD cell model was significantly increased compared to controls. Aβ-42 treatment caused up-regulation of APP expression, while APP knockdown inhibited neurons through autophagy. In conclusion, miR-129 overexpression can regulate autophagy by targeting APP5, thereby reducing neuronal damage in AD. These findings provide a new perspective for treating AD.


2022 ◽  
Vol 7 (4) ◽  
pp. 275-280
Author(s):  
Mamata Mishra ◽  
Pankaj Seth

During aging, the decrease of cognitive ability is believed to be the cause of age related neuronal damage and reduced proliferation and differentiation of adult-born neural precursor cells. To modulate the synaptic plasticity and adult neurogenesis, it is of immense importance to enhance the potential of resident neural stem cells of hippocampus and sub ventricular zone (SVZ). The necessity to restore brain functions is enormous in the neurodegenerative disease like Alzheimer, Parkinson diseases, stress induced cognitive dysfunction, depression and age-associated and HIV-associated dementia. As a pioneer transmitter, Gamma Amino Butaric Acid (GABA) influences the activity dependent adult neurogenesis and excites immature neurons in adult hippocampus. GABA holds the key for making adult immature neuron to mature functional neuron hence plays critical role in adult neurogenesis.This review aims to discuss about the spatio-temporal expression of various subunit of GABA-A receptor and how these subunits intimately modulates the synaptic plasticity. During developmental period GABAergic neurons mature at early stages and regulate overall neural activity much before the activity of glutamate. Not only during development but also during adult neurogenesis GABA plays a significant role in neurite outgrowth and establishing well network.


Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Le Minh Tu Phan ◽  
Thi Xoan Hoang ◽  
Sungbo Cho

Although iron is an essential constituent for almost all living organisms, iron dyshomeostasis at a cellular level may trigger oxidative stress and neuronal damage. Hence, there are numerous reported carbon dots (CDs) that have been synthesized and applied to determine intracellular iron ions. However, among reported CDs focused to detect Fe3+ ions, only a few CDs have been designed to specifically determine Fe2+ ions over Fe3+ ions for monitoring of intracellular Fe2+ ions. We have developed the nitrogen-doped CDs (NCDs) for fluorescence turn-off detection of Fe2+ at cellular level. The as-synthesized NCDs exhibit a strong blue fluorescence and low cytotoxicity, acting as fluorescence probes to detect Fe2+ as low as 0.702 µM in aqueous solution within 2 min and visualize intracellular Fe2+ in the concentration range from 0 to 500 µM within 20 min. The as-prepared NCDs possess some advantages such as high biocompatibility, strong fluorescence properties, selectivity, and rapidity for intracellular Fe2+ monitoring, making NCDs an excellent nanoprobe for biosensing of intracellular ferrous ions.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 160
Author(s):  
Katharina Murillo ◽  
Azat Samigullin ◽  
Per M. Humpert ◽  
Thomas Fleming ◽  
Kübra Özer ◽  
...  

C. elegans are used to study molecular pathways, linking high glucose levels (HG) to diabetic complications. Persistent exposure of C. elegans to a HG environment induces the mitochondrial formation of reactive oxygen species (ROS) and advanced glycation endproducts (AGEs), leading to neuronal damage and decreased lifespan. Studies suggest that transient high glucose exposure (TGE) exerts different effects than persistent exposure. Thus, the effects of TGE on ROS, AGE-formation and life span were studied in C. elegans. Four-day TGE (400 mM) as compared to controls (0mM) showed a persistent increase of ROS (4-days 286 ± 40 RLUs vs. control 187 ± 23 RLUs) without increased formation of AGEs. TGE increased body motility (1-day 0.14 ± 0.02; 4-days 0.15 ± 0.01; 6-days 0.16 ± 0.02 vs. control 0.10 ± 0.02 in mm/s), and bending angle (1-day 17.7 ± 1.55; 3-days 18.7 ± 1.39; 6-days 20.3 ± 0.61 vs. control 15.3 ± 1.63 in degree/s) as signs of neuronal damage. Lifespan was increased by 27% (21 ± 2.4 days) after one-day TGE, 34% (22 ± 1.2 days) after four-days TGE, and 26% (21 ± 1.4 days) after six-days TGE vs. control (16 ± 1.3 days). These experiments suggest that TGE in C. elegans has positive effects on life span and neuronal function, associated with mildly increased ROS-formation. From the perspective of metabolic memory, hormetic effects outweighed the detrimental effects of a HG environment.


2022 ◽  
Vol 12 ◽  
Author(s):  
Meizhu Zheng ◽  
Mi Zhou ◽  
Minghui Chen ◽  
Yao Lu ◽  
Dongfang Shi ◽  
...  

Daidzein is a plant isoflavonoid primarily isolated from Pueraria lobate Radix as the dry root of P. lobata (Wild.) Ohwi, have long been used as nutraceutical and medicinal herb in China. Despite the report that daidzein can prevent neuronal damage and improve outcome in experimental stroke, the mechanisms of this neuroprotective action have been not fully elucidated. The aim of this study was to determine whether the daidzein elicits beneficial actions in a stroke model, namely, cerebral ischemia/reperfusion (I/R) injury, and to reveal the underlying neuroprotective mechanisms associated with the regulation of Akt/mTOR/BDNF signal pathway. The results showed that I/R, daidzein treatment significantly improved neurological deficits, infarct volume, and brain edema at 20 and 30 mg/kg, respectively. Meanwhile, it was found out that the pretreatment with daidzein at 20 and 30 mg/kg evidently improved striatal dopamine and its metabolite levels. In addition, daidzein treatment reduced the cleaved Caspase-3 level but enhanced the phosphorylation of Akt, BAD and mTOR. Moreover, daidzein at 30 mg/kg treatment enhanced the expression of BDNF and CREB significantly. This protective effect of daidzein was ameliorated by inhibiting the PI3K/Akt/mTOR signaling pathway using LY294002. To sum up, our results demonstrated that daidzein could protect animals against ischemic damage through the regulation of the Akt/mTOR/BDNF channel, and the present study may facilitate the therapeutic research of stroke.


2022 ◽  
Vol 20 (2) ◽  
pp. 269-274
Author(s):  
Zhou Yu ◽  
Yao Yan ◽  
Ying Lou

Purpose: To investigate Curcuma longa Linn against neuronal damage induced by exposure to sevoflurane during surgical procedures. Methods: A sealed box made of transparent glass was used for anaesthetic exposure of neurons. The neurons were exposed to Curcuma longa Linn at doses of 1.5, 3, 6 and 12 μM prior to viability assessment using MTT assay. The effect of Curcuma longa Linn treatment on protein expression was determined using western blotting. Results: Sevoflurane exposure led to significant and time-dependent reductions in neuronal proliferation, when compared to unexposed cells (p < 0.05). Curcuma longa Linn at doses of 1.5, 3, 6 and 12 μM significantly decreased sevoflurane-mediated neuronal apoptosis. It reduced cleaved caspase-3 and Bax levels in neurons. However, the Curcuma longa Linn-mediated inhibition of sevoflurane-induced neuronal apoptosis was significantly suppressed by VPC23019 (p < 0.05). The p- ERK1/2 level was dose-dependently up-regulated in neurons exposed to sevoflurane on treatment with Curcuma longa Linn. Moreover, VPC23019 reversed the upregulatory effect of Curcuma longa Linn on p-ERK1/2 expression in sevoflurane-exposed neurons (p < 0.05). Conclusion: Curcuma longa Linn reversed sevoflurane-induced neuronal apoptosis by elevating p- ERK1/2 expression. Therefore, Curcuma longa Linn exerts inhibitory effect on anaesthesia-induced apoptosis in neurons, and may be useful for the treatment of this condition.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuan Chao Xue ◽  
Huitao Liu ◽  
Yasir Mohamud ◽  
Amirhossein Bahreyni ◽  
Jingchun Zhang ◽  
...  

Abstract Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron system associated with both genetic and environmental risk factors. Infection with enteroviruses, including poliovirus and coxsackievirus, such as coxsackievirus B3 (CVB3), has been proposed as a possible causal/risk factor for ALS due to the evidence that enteroviruses can target motor neurons and establish a persistent infection in the central nervous system (CNS), and recent findings that enteroviral infection-induced molecular and pathological phenotypes closely resemble ALS. However, a causal relationship has not yet been affirmed. Methods Wild-type C57BL/6J and G85R mutant superoxide dismutase 1 (SOD1G85R) ALS mice were intracerebroventricularly infected with a sublethal dose of CVB3 or sham-infected. For a subset of mice, ribavirin (a broad-spectrum anti-RNA viral drug) was given subcutaneously during the acute or chronic stage of infection. Following viral infection, general activity and survival were monitored daily for up to week 60. Starting at week 20 post-infection (PI), motor functions were measured weekly. Mouse brains and/or spinal cords were harvested at day 10, week 20 and week 60 PI for histopathological evaluation of neurotoxicity, immunohistochemical staining of viral protein, neuroinflammatory/immune and ALS pathology markers, and NanoString and RT-qPCR analysis of inflammatory gene expression. Results We found that sublethal infection (mimicking chronic infection) of SOD1G85R ALS mice with CVB3 resulted in early onset and progressive motor dysfunction, and shortened lifespan, while similar viral infection in C57BL/6J, the background strain of SOD1G85R mice, did not significantly affect motor function and mortality as compared to mock infection within the timeframe of the current study (60 weeks PI). Furthermore, we showed that CVB3 infection led to a significant increase in proinflammatory gene expression and immune cell infiltration and induced ALS-related pathologies (i.e., TAR DNA-binding protein 43 (TDP-43) pathology and neuronal damage) in the CNS of both SOD1G85R and C57BL/6J mice. Finally, we discovered that early (day 1) but not late (day 15) administration of ribavirin could rescue ALS-like neuropathology and symptoms induced by CVB3 infection. Conclusions Our study identifies a new risk factor that contributes to early onset and accelerated progression of ALS and offers opportunities for the development of novel targeted therapies.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Changyoun Kim ◽  
Armine Hovakimyan ◽  
Karen Zagorski ◽  
Tatevik Antonyan ◽  
Irina Petrushina ◽  
...  

AbstractAccumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson’s disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain. To ensure sufficient therapeutic concentrations of anti-α-Syn antibodies in the periphery and CNS, we developed four α-Syn DNA vaccines based on the universal MultiTEP platform technology designed especially for the elderly with immunosenescence. Here, we are reporting on the efficacy and immunogenicity of these vaccines targeting three B-cell epitopes of hα-Syn aa85–99 (PV-1947D), aa109–126 (PV-1948D), aa126–140 (PV-1949D) separately or simultaneously (PV-1950D) in a mouse model of synucleinopathies mimicking PD/DLB. All vaccines induced high titers of antibodies specific to hα-Syn that significantly reduced PD/DLB-like pathology in hα-Syn D line mice. The most significant reduction of the total and protein kinase resistant hα-Syn, as well as neurodegeneration, were observed in various brain regions of mice vaccinated with PV-1949D and PV-1950D in a sex-dependent manner. Based on these preclinical data, we selected the PV-1950D vaccine for future IND enabling preclinical studies and clinical development.


Author(s):  
Divya Sankaramourthy ◽  
Lakshmi Sankaranarayanan ◽  
Kavimani Subramanian ◽  
Sudha Rani Sadras

Abstract The most common human neurodegenerative diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) etc. have been recognized to result from a complex interplay between genetic predisposition and defective cellular dynamics such as inappropriate accumulation of unfolded proteins, oxygen free radicals and mitochondrial dysfunction. The treatment strategies available today for these neurodegenerative ailments are only palliative and are incapable of restraining the progression of the disease. Hence, there is an immense requirement for identification of drug candidates with the ability to alleviate neuronal damage along with controlling progression of the disease. From time immemorial mankind has been relying on plants for treating varied types of dreadful diseases. Among the various medicinal plants used for treating various neurological ailments, Celastrus paniculatus (CP) popularly known as Jyotishmati or Malkangni is well known in the Ayurveda system of Indian Traditional Medicine whose seeds and seed oil have been used for centuries in treating epilepsy, dementia, facial paralysis, amnesia, anxiety, sciatica, cognitive dysfunctions etc. This review apart from specifying the phytochemical characteristics and traditional uses of C. paniculatus seeds and seed oil also exemplify the comprehensive data derived from various research reports on their therapeutic potential against some common neurological disorders.


2022 ◽  
Author(s):  
Tamara Zorbaz ◽  
Nimrod Madrer ◽  
Hermona Soreq

Inflammatory stimuli and consequent pro-inflammatory immune responses may facilitate neurodegeneration and threaten survival following pathogen infection or trauma, but potential controllers preventing these risks are incompletely understood. Here, we argue that small RNA regulators of acetylcholine (ACh) signaling, including microRNAs and transfer RNA fragments may tilt the balance between innate and adaptive immunity, avoid chronic inflammation and prevent the neuroinflammation-mediated exacerbation of many neurological diseases. While the restrictive permeability of the blood-brain barrier protects the brain from peripheral immune events, this barrier can be disrupted by inflammation and is weakened with age. The consequently dysregulated balance between pro- and anti-inflammatory processes may modify the immune activities of brain microglia, astrocytes, perivascular macrophages, oligodendrocytes and dendritic cells, leading to neuronal damage. Notably, the vagus nerve mediates the peripheral cholinergic anti-inflammatory reflex and underlines the consistent control of body-brain inflammation by pro-inflammatory cytokines, which affect cholinergic functions; therefore, the disruption of this reflex can exacerbate cognitive impairments such as attention deficits and delirium. RNA regulators can contribute to re-balancing the cholinergic network and avoiding its chronic deterioration, and their activities may differ between men and women and/or wear off with age. This can lead to hypersensitivity of aged patients to inflammation and higher risks of neuroinflammatory-driven cholinergic impairments such as delirium and dementia following COVID-19 infection. The age- and sex-driven differences in post-transcriptional RNA regulators of cholinergic elements may hence indicate new personalized therapeutic options for neuroinflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document