Effect of early Sanguinate (PEGylated carboxyhemoglobin bovine) infusion on cerebral blood flow to the ischemic core in experimental middle cerebral artery occlusion

2021 ◽  
pp. neurintsurg-2021-018239
Author(s):  
Gregory A Christoforidis ◽  
Niloufar Saadat ◽  
Mira Liu ◽  
Yong Ik Jeong ◽  
Steven Roth ◽  
...  

BackgroundSanguinate, a bovine PEGylated carboxyhemoglobin-based oxygen carrier with vasodilatory, oncotic and anti-inflammatory properties designed to release oxygen in hypoxic tissue, was tested to determine if it improves infarct volume, collateral recruitment and blood flow to the ischemic core in hyperacute middle cerebral artery occlusion (MCAO).MethodsUnder an IACUC approved protocol, 14 mongrel dogs underwent endovascular permanent MCAO. Seven received Sanguinate (8 mL/kg) intravenously over 10 min starting 30 min following MCAO and seven received a similar volume of normal saline. Relative cerebral blood flow (rCBF) was assessed using neutron-activated microspheres prior to MCAO, 30 min following MCAO and 30 min following intervention. Pial collateral recruitment was scored and measured by arterial arrival time (AAT) immediately prior to post-MCAO microsphere injection. Diffusion-weighted 3T MRI was used to assess infarct volume approximately 2 hours after MCAO.ResultsMean infarct volumes for control and Sanguinate-treated subjects were 4739 mm3 and 2585 mm3 (p=0.0443; r2=0.687), respectively. Following intervention, rCBF values were 0.340 for controls and 0.715 in the Sanguinate group (r2=0.536; p=0.0064). Pial collateral scores improved only in Sanguinate-treated subjects and AAT decreased by a mean of 0.314 s in treated subjects and increased by a mean of 0.438 s in controls (p<0.0276).ConclusionPreliminary results indicate that topload bolus administration of Sanguinate in hyperacute ischemic stroke significantly improves infarct volume, pial collateral recruitment and CBF in experimental MCAO immediately following its administration.

1989 ◽  
Vol 257 (5) ◽  
pp. H1656-H1662
Author(s):  
M. Anwar ◽  
H. R. Weiss

The effects of adenosine on regional cerebral blood flow and indexes of the total and perfused microvascular bed were studied after 1 h of middle cerebral artery occlusion in the anesthetized rat. Iodo[14C]antipyrine was used to determine cerebral blood flow. Fluorescein isothiocyanate-dextran was used to study the perfused microvasculature, and an alkaline phosphatase stain was used to identify the total bed. Mean arterial blood pressure was significantly reduced by adenosine. Cerebral blood flow increased significantly by 75%, except in the flow-restricted cortex where flow averaged 28 +/- 15 (SD) ml.min-1.100 g-1 in control and 34 +/- 33 ml.min-1.100 g-1 in adenosine-treated animals. No significant regional structural differences were observed within the microvascular beds of the two groups. The percentage of the microvascular volume perfused increased significantly in all brain regions in the adenosine-treated rats, including the flow-restricted cortex. The percent perfused arteriolar volume in the flow-restricted cortex was 30 +/- 12% in control and 95 +/- 3% in adenosine-treated animals. Similar values for the capillary bed were 22 +/- 10% in control and 54 +/- 3% in adenosine-treated rats. These results indicate a maintenance of flow with a reduction in diffusion distances in the flow-restricted cortex after treatment with adenosine.


2018 ◽  
Vol 314 (5) ◽  
pp. H967-H977 ◽  
Author(s):  
Jennifer A. Shearer ◽  
Susan J. Coker ◽  
Hilary V. O. Carswell

2-Arachidonoylglycerol (2-AG) is a major modulator of blood flow and platelet aggregation and a potential neuroprotectant. The present study investigated, for the first time, the effects of 2-AG on cerebral blood flow (CBF) in the first critical hours during middle cerebral artery occlusion (MCAO) and on platelet aggregation in rats. Adult male Sprague-Dawley rats ( n = 30) underwent permanent MCAO under isoflurane anesthesia and were randomly assigned to receive either 2-AG (6 mg/kg iv), monoacylglycerol lipase inhibitor JZL-184 (10 mg/kg iv), or vehicle ( n = 6 rats/group) treatment. CBF and cardiovascular responses were measured, by a blinded investigator, for up to 4 h. In separate experiments, platelet aggregation by 2-AG (19–300 µM) was assessed by whole blood aggregometry ( n = 40). 2-AG and JZL-184 significantly increased the severity of the CBF deficit versus vehicle (20.2 ± 8.8% and 22.7 ± 6.4% vs. 56.4 ± 12.1% of pre-MCAO baseline, respectively, P < 0.05) but had no effect on blood pressure or heart rate. While JZL-184 significantly increased the number of thrombi after MCAO, this did not reach significance by 2-AG. 2-AG induced platelet aggregation in rat whole blood in a similar manner to arachidonic acid and was significantly reduced by the cyclooxygenase inhibitors indomethacin and flurbiprofen and the thromboxane receptor antagonist ICI 192,605 ( P < 0.05). This is the first study showing that 2-AG increases the severity of the CBF deficit during MCAO, and further interrogation confirmed 2-AG-induced platelet aggregation in rats. These findings are important because 2-AG had previously been shown to exert neuroprotective actions and therefore force us to reevaluate the circumstances under which 2-AG is beneficial. NEW & NOTEWORTHY 2-Arachidonoylglycerol (2-AG) has neuroprotective properties; however, the present study revealed that 2-AG increases the severity of the cerebral blood flow deficit during middle cerebral artery occlusion in rats. Further interrogation showed that 2-AG induces platelet aggregation in rats. These findings force us to reevaluate the circumstances under which 2-AG is beneficial.


1997 ◽  
Vol 17 (12) ◽  
pp. 1266-1280 ◽  
Author(s):  
Ludmila Belayev ◽  
Weizhao Zhao ◽  
Raul Busto ◽  
Myron D. Ginsberg

Using autoradiographic image-averaging strategies, we studied the relationship between local glucose utilization (LCMRglc) and blood flow (LCBF) in a highly reproducible model of transient (2-hour) middle cerebral artery occlusion (MCAO) produced in Sprague-Dawley rats by insertion of an intraluminal suture coated with poly-L-lysine. Neurobehavioral examination at 60 minutes after occlusion substantiated a high-grade deficit in all animals. In two subgroups, LCBF was measured with 14C-iodoantipyrine at either 1.5 hours of MCAO, or at 1 hour of recirculation after suture removal. In two other matched subgroups, LCMRglc was measured with 14C-2-deoxyglucose at 1.5 to 2.25 hours of MCAO, and at 0.75 to 1.5 hours of recirculation after 2 hours of MCAO. Average image data sets were generated for LCBF, LCMRglc, and the LCMRglc/LCBF ratio for each study time. Middle cerebral artery occlusion for 2 hours induced graded LCBF decrements affecting ipsilateral cortical and basal ganglionic regions. After 1 hour of recirculation, LCBF in previously ischemic neocortical regions increased by 40% to 200% above ischemic levels, but remained depressed, on average, at about 40% of control. By contrast, frank hyperemia was noted in the previously ischemic caudoputamen. Mean cortical LCBF values during MCAO correlated highly with their respective LCBF values after 1 hour of recirculation (R = 0.93), suggesting that postischemic LCBF recovery is related to the depth of ischemia. Despite focal ischemia, LCMRglc during ~2 hours of MCAO was preserved, on average, at near-normal levels; but following ~1 h of recirculation, LCMRglc became markedly depressed (on average, 55% of control in previously densely ischemic cortical regions). Regression analysis indicated that this depressed glucose utilization was determined largely by the intensity of antecedent ischemia. By pixel analysis, the ischemic core (defined as LCBF 0% to 20% of control) comprised 33% of the ischemic hemisphere, and the penumbra (LCBF 20% to 40%) accounted for 26%. The penumbra was concentrated at the coronal poles of the ischemic lesion and formed a thin shell around the central ischemic core. During 2 hours of MCAO, the LCMRglc/LCBF ratio within the ischemic penumbra was increased four-fold above normal (average, 179 umol/100 mL). In marked contrast, after ~1 h recirculation, this uncoupling had almost completely subsided. The companion study ( Zhao et al., 1997 ) further analyzes these findings in relation to patterns of infarctive histopathology.


Sign in / Sign up

Export Citation Format

Share Document