Effect of suture size and carotid clip application upon blood flow and infarct volume after permanent and temporary middle cerebral artery occlusion in mice

2003 ◽  
Vol 970 (1-2) ◽  
pp. 131-139 ◽  
Author(s):  
Daisuke Tsuchiya ◽  
Shwuhuey Hong ◽  
Takamasa Kayama ◽  
S.Scott Panter ◽  
Philip R. Weinstein
2021 ◽  
pp. neurintsurg-2021-018239
Author(s):  
Gregory A Christoforidis ◽  
Niloufar Saadat ◽  
Mira Liu ◽  
Yong Ik Jeong ◽  
Steven Roth ◽  
...  

BackgroundSanguinate, a bovine PEGylated carboxyhemoglobin-based oxygen carrier with vasodilatory, oncotic and anti-inflammatory properties designed to release oxygen in hypoxic tissue, was tested to determine if it improves infarct volume, collateral recruitment and blood flow to the ischemic core in hyperacute middle cerebral artery occlusion (MCAO).MethodsUnder an IACUC approved protocol, 14 mongrel dogs underwent endovascular permanent MCAO. Seven received Sanguinate (8 mL/kg) intravenously over 10 min starting 30 min following MCAO and seven received a similar volume of normal saline. Relative cerebral blood flow (rCBF) was assessed using neutron-activated microspheres prior to MCAO, 30 min following MCAO and 30 min following intervention. Pial collateral recruitment was scored and measured by arterial arrival time (AAT) immediately prior to post-MCAO microsphere injection. Diffusion-weighted 3T MRI was used to assess infarct volume approximately 2 hours after MCAO.ResultsMean infarct volumes for control and Sanguinate-treated subjects were 4739 mm3 and 2585 mm3 (p=0.0443; r2=0.687), respectively. Following intervention, rCBF values were 0.340 for controls and 0.715 in the Sanguinate group (r2=0.536; p=0.0064). Pial collateral scores improved only in Sanguinate-treated subjects and AAT decreased by a mean of 0.314 s in treated subjects and increased by a mean of 0.438 s in controls (p<0.0276).ConclusionPreliminary results indicate that topload bolus administration of Sanguinate in hyperacute ischemic stroke significantly improves infarct volume, pial collateral recruitment and CBF in experimental MCAO immediately following its administration.


2018 ◽  
Vol 2 ◽  
pp. 239821281879482 ◽  
Author(s):  
Lisa A. Thow ◽  
Kathleen MacDonald ◽  
William M. Holmes ◽  
Keith W. Muir ◽  
I. Mhairi Macrae ◽  
...  

Background: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. Methods: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using 99mTc-D, L-hexamethylpropyleneamine oxime (99mTc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T2-weighted magnetic resonance imaging. Results: Glucose administration had no effect on the severity of ischaemia when assessed by either 99mTc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient–derived lesion volume 2–4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. Conclusions: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear.


1994 ◽  
Vol 80 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Hiroshi Karibe ◽  
Jun Chen ◽  
Gregory J. Zarow ◽  
Steven H. Graham ◽  
Philip R. Weinstein

✓ Deep to moderate hypothermia (24° to 30°C) during focal cerebral ischemia reduces infarct volume but must be initiated before the onset of ischemia to be effective and has deleterious pulmonary, myocardial and neurological effects. It is not known whether mild hypothermia (32° to 33°C) protects against ischemic neuronal damage, whether hypothermia induced after the onset of ischemia has protective effects, or whether these effects are associated with alterations in cortical blood flow. In this study, mild whole-body hypothermia was induced in rats just before or 10, 30, or 60 minutes after the onset of 2 hours of temporary middle cerebral artery occlusion; rewarming began immediately after reversal of occlusion and normothermia was maintained throughout 22 hours of reperfusion. Infarct volume, measured 24 hours after the end of reperfusion, was significantly smaller in rats made hypothermic within 30 minutes after the onset of ischemia than in normothermic controls; hypothermia induced at 60 minutes of ischemia did not reduce infarct volume. Cortical blood flow, measured by laser Doppler ultrasound flowmetry, was not significantly different between groups during ischemia; however, postischemic cortical blood flow correlated positively with total infarct volume. These results indicate that mild hypothermia initiated during temporary focal ischemia in rats can reduce infarct volume without attenuating the reduction in cortical blood flow.


2002 ◽  
Vol 283 (3) ◽  
pp. H1005-H1011 ◽  
Author(s):  
Katsuyoshi Shimizu ◽  
Zsombor Lacza ◽  
Nishadi Rajapakse ◽  
Takashi Horiguchi ◽  
James Snipes ◽  
...  

We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K+ (mitoKATP) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 μl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 ± 0.7, n = 13) compared with sham treatment (9.5 ± 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 ± 3.6% ( n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 ± 4.8% ( n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 μl saline), a selective blocker of mitoKATP channels ( n = 6). These results indicate that selective opening of the mitoKATP channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Pranay Prabhakar ◽  
Hua Zhang ◽  
De Chen ◽  
Stephen Lockett ◽  
James E Faber

Introduction: The presence of a native (pre-existing) collateral circulation in tissues lessens injury in stroke and other occlusive diseases. However, differences in genetic background are accompanied by wide variation in the number and diameter (extent) of native collaterals in mice, resulting in large variation in protection. Indirect evidence suggests a similar wide variation also exists in humans. However, methods of measurement in humans are indirect, invasive and not widely available. Hypothesis: We sought to determine if differences in genetic background in mice result in variation in branch-patterning of the retinal circulation, and if these differences predict differences in collateral extent and, in turn, differences in severity of ischemic stroke. Methods: Patterning metrics were obtained for the retinal arterial trees of 10 mouse strains (n=8 per strain) that differ widely in collateral extent in brain and other tissues. We also obtained pial collateral number and diameter, and infarct volume 24h after permanent middle cerebral artery occlusion. Forward- and reverse-stepwise multivariate regression analysis was conducted and model performance assessed using K-fold cross-validation. Results: Twenty-one metrics varied significantly with genetic strain (p<0.01). Ten metrics (eg, vessel caliber, bifurcation angle, lacunarity, optimality, branch length) strongly predicted collateral number and diameter across 7 regression models. The best models closely predicted (p<0.0001) collateral number (K-fold R 2 =0.83-0.98), diameter (0.73-0.88) and infarct volume (0.85-0.87). Conclusions: Differences in retinal tree patterning are specified by genetic background and closely predict genetic variation in pial collateral extent and, in turn, stroke severity. If these findings can be confirmed in humans, and given that genetic variation in cerebral collaterals extends to other tissues at least in mice, a similar “retinal predictor index” could be developed as a biomarker for collateral extent in brain and other tissues. This could aid prediction of the risk-severity of tissue injury in occlusive disease as well as stratification of patients for treatment options and enrollment in clinical studies.


2021 ◽  
Vol 4 (4) ◽  
pp. 592-612
Author(s):  
Ye Feng ◽  
Qian Xu ◽  
Raymond Tak Fai Cheung

Cerebral ischemia induces oxidative injury and increases the intracellular calcium ion concentration to activate several calcium-dependent proteases such as calpains. Calpain activation leads to various necrotic and apoptotic processes. Calpeptin is a potent, cell-permeable calpain inhibitor. As a strong antioxidant and free radical scavenger, melatonin shows beneficial effect in rodent models of focal cerebral ischemia when given prior to ischemia or reperfusion. This study was focused on the neuroprotective effects of melatonin and/or calpeptin given after onset of reperfusion. For this purpose, right-sided middle cerebral artery occlusion (MCAO) for 90 minutes followed by 24 or 72 hours of reperfusion was performed in male Sprague Dawley rats, then, melatonin 50 or 150 µg/kg, calpeptin 10, 15 or 50 µg/kg or a combination of melatonin 50 µg/kg plus calpeptin 15 or 50 µg/kg were injected via an intracerebroventricular route at 15 minutes after onset of reperfusion. Melatonin or calpeptin tended to reduce the relative infarct volume and significantly decreased the neurological deficit at 24 hours. The combination achieved a greater protection than each of them alone. Melatonin, calpeptin or the combination all decreased Fluoro-Jade B (FJB)+ degenerative neurons and cleaved/total caspase-3 ratio at 24 hours. These treatments did not significantly impact the density of surviving neurons and ED-1+ macrophage/activated microglia. At the 72-hour-reperfusion, melatonin or the combination decreased the relative infarct volume and neurological deficit. Nevertheless, only the combination reduced FJB+ degenerating neurons at 72 hours. In conclusion, a combination of melatonin and calpeptin exerted synergistic protection against post-reperfusion injury in a rat MCAO stroke model.


Sign in / Sign up

Export Citation Format

Share Document