Asymptotic Solutions of Initial Value Problems for Nonlinear Partial Differential Equations

1970 ◽  
Vol 18 (4) ◽  
pp. 748-758 ◽  
Author(s):  
Joseph B. Keller ◽  
Stanley Kogelman
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Nemat Dalir

The modified decomposition method (MDM) is improved by introducing new inverse differential operators to adapt the MDM for handling third-order singular nonlinear partial differential equations (PDEs) arising in physics and mechanics. A few case-study singular nonlinear initial-value problems (IVPs) of third-order PDEs are presented and solved by the improved modified decomposition method (IMDM). The solutions are compared with the existing exact analytical solutions. The comparisons show that the IMDM is effectively capable of obtaining the exact solutions of the third-order singular nonlinear IVPs.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
S. N. Jator ◽  
F. F. Ngwane ◽  
N. O. Kirby

We present a block hybrid functionally fitted Runge–Kutta–Nyström method (BHFNM) which is dependent on the stepsize and a fixed frequency. Since the method is implemented in a block-by-block fashion, the method does not require starting values and predictors inherent to other predictor-corrector methods. Upon deriving our method, stability is illustrated, and it is used to numerically solve the general second-order initial value problems as well as hyperbolic partial differential equations. In doing so, we demonstrate the method’s relative accuracy and efficiency.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Srinivasarao Thota

Abstract Objectives In this paper, we present and employ symbolic Maple software algorithm for solving initial value problems (IVPs) of partial differential equations (PDEs). From the literature, the proposed algorithm exhibited a great significant in solving partial differential equation arises in applied sciences and engineering. Results The implementation include computing partial differential operator (), Greens function () and exact solution () of the given IVP. We also present syntax, , to apply the partial differential operator to verify the solution of the given IVP obtained from . Sample computations are presented to illustrate the maple implementation.


Sign in / Sign up

Export Citation Format

Share Document