scholarly journals Functionally Fitted Block Method for Solving the General Oscillatory Second-Order Initial Value Problems and Hyperbolic Partial Differential Equations

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
S. N. Jator ◽  
F. F. Ngwane ◽  
N. O. Kirby

We present a block hybrid functionally fitted Runge–Kutta–Nyström method (BHFNM) which is dependent on the stepsize and a fixed frequency. Since the method is implemented in a block-by-block fashion, the method does not require starting values and predictors inherent to other predictor-corrector methods. Upon deriving our method, stability is illustrated, and it is used to numerically solve the general second-order initial value problems as well as hyperbolic partial differential equations. In doing so, we demonstrate the method’s relative accuracy and efficiency.

2001 ◽  
Vol 32 (4) ◽  
pp. 327-333
Author(s):  
Wen Rong Li ◽  
Sui Sun Cheng

Several Wendroff type inequalities are derived, and applications to characteristic initial value problems involving hyperbolic partial differential equations are illustrated.


Author(s):  
Y. Skwame ◽  
J. Sabo ◽  
M. Mathew

A general one-step hybrid block method with equidistant of order 6 has been successfully developed for the direct solution of second order IVPs in this article. Numerical analysis shows that the developed method is consistent and zero-stable which implies its convergence. The analysis of the new method is examined on two highly and mildly stiff second-order initial value problems to illustrate the efficiency of the method. It is obvious that our method performs better than the existing method within which we compare our result with. Hence, the approach is an adequate one for solving special second order IVPs.


Sign in / Sign up

Export Citation Format

Share Document