Joint Distributions of Random Variables Connected with Fluctuations of a Stable Process

1973 ◽  
Vol 18 (1) ◽  
pp. 161-169 ◽  
Author(s):  
V. B. Nevzorov
1972 ◽  
Vol 31 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Donald W. Zimmerman

The concepts of random error and reliability of measurements that are familiar in traditional theories based on the notions of “true values” and “errors” can be represented by a probability model having a simpler formal structure and fewer special assumptions about random sampling and independence of measurements. In this model formulas that relate observable events are derived from probability axioms and from primitive terms that refer to observable events, without an intermediate structure containing variances and correlations of “true” and “error” components of scores. While more economical in language and formalism, the model at the same time is more general than classical theories and applies to stochastic processes in which joint distributions of many dependent random variables are of interest. In addition, it clarifies some long-standing problems concerning “experimental independence” of measurements and the relation of sampling of individuals to sampling of measurements.


1973 ◽  
Vol 16 (2) ◽  
pp. 173-177 ◽  
Author(s):  
D. R. Beuerman

Let Xl,X2,X3, … be a sequence of independent and identically distributed (i.i.d.) random variables which belong to the domain of attraction of a stable law of index α≠1. That is,1whereandwhere L(n) is a function of slow variation; also take S0=0, B0=l.In §2, we are concerned with the weak convergence of the partial sum process to a stable process and the question of centering for stable laws and drift for stable processes.


1994 ◽  
Vol 31 (A) ◽  
pp. 239-250
Author(s):  
Endre Csáki

Some exact and asymptotic joint distributions are given for certain random variables defined on the excursions of a simple symmetric random walk. We derive appropriate recursion formulas and apply them to get certain expressions for the joint generating or characteristic functions of the random variables.


Author(s):  
Ehtibar N. Dzhafarov ◽  
Víctor H. Cervantes ◽  
Janne V. Kujala

Random variables representing measurements, broadly understood to include any responses to any inputs, form a system in which each of them is uniquely identified by its content (that which it measures) and its context (the conditions under which it is recorded). Two random variables are jointly distributed if and only if they share a context. In a canonical representation of a system, all random variables are binary, and every content-sharing pair of random variables has a unique maximal coupling (the joint distribution imposed on them so that they coincide with maximal possible probability). The system is contextual if these maximal couplings are incompatible with the joint distributions of the context-sharing random variables. We propose to represent any system of measurements in a canonical form and to consider the system contextual if and only if its canonical representation is contextual. As an illustration, we establish a criterion for contextuality of the canonical system consisting of all dichotomizations of a single pair of content-sharing categorical random variables. This article is part of the themed issue ‘Second quantum revolution: foundational questions’.


1990 ◽  
Vol 22 (2) ◽  
pp. 396-411 ◽  
Author(s):  
Douglas P. Kennedy ◽  
Robert P. Kertz

The extremal types theorem identifies asymptotic behaviour for the maxima of sequences of i.i.d. random variables. A parallel theorem is given which identifies the asymptotic behaviour of sequences of threshold-stopped random variables. Three new types of limit distributions arise, but normalizing constants remain the same as in the maxima case. Limiting joint distributions are also given for maxima and threshold-stopped random variables. Applications to the optimal stopping of i.i.d. random variables are given.


1961 ◽  
Vol 2 (2) ◽  
pp. 229-242 ◽  
Author(s):  
E. J. Hannan

The classical theory of canonical correlation is concerned with a standard description of the relationship between any linear combination of ρ random variablesxs, and any linear combination ofqrandom variablesytinsofar as this relation can be described in terms of correlation. Lancaster [1] has extended this theory, forp=q= 1, to include a description of the correlation of any function of a random variablexand any function of a random variabley(both functions having finite variance) for a class of joint distributions ofxandywhich is very general. It is the purpose of this paper to derive Lancaster's results from general theorems concerning the spectral decomposition of operators on a Hilbert space. These theorems lend themselves easily to the generalisation of the theory to situations wherepandqare not finite. In the case of Gaussian, stationary, processes this generalisation is equivalent to the classical spectral theory and corresponds to a canonical reduction of a (finite) sample of data which is basic. The theory also then extends to any number of processes. In the Gaussian case, also, the present discussion-is connected with the results of Gelfand and Yaglom [2] relating to the amount of information in one random process about another.


2012 ◽  
Vol 49 (3) ◽  
pp. 758-772 ◽  
Author(s):  
Fred W. Huffer ◽  
Jayaram Sethuraman

An infinite sequence (Y1, Y2,…) of independent Bernoulli random variables with P(Yi = 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z1, Z2, Z3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z1, Z2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y1, Y2,…, Yn) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.


2012 ◽  
Vol 49 (03) ◽  
pp. 758-772 ◽  
Author(s):  
Fred W. Huffer ◽  
Jayaram Sethuraman

An infinite sequence (Y 1, Y 2,…) of independent Bernoulli random variables with P(Y i = 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z 1, Z 2, Z 3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z 1, Z 2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y 1, Y 2,…, Y n ) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z 1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.


Sign in / Sign up

Export Citation Format

Share Document