Error and Reliability in Stochastic Processes and Psychological Measurement

1972 ◽  
Vol 31 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Donald W. Zimmerman

The concepts of random error and reliability of measurements that are familiar in traditional theories based on the notions of “true values” and “errors” can be represented by a probability model having a simpler formal structure and fewer special assumptions about random sampling and independence of measurements. In this model formulas that relate observable events are derived from probability axioms and from primitive terms that refer to observable events, without an intermediate structure containing variances and correlations of “true” and “error” components of scores. While more economical in language and formalism, the model at the same time is more general than classical theories and applies to stochastic processes in which joint distributions of many dependent random variables are of interest. In addition, it clarifies some long-standing problems concerning “experimental independence” of measurements and the relation of sampling of individuals to sampling of measurements.

1971 ◽  
Vol 28 (1) ◽  
pp. 291-301 ◽  
Author(s):  
Donald W. Zimmerman

A model of variability in measurement, which is sufficiently general for a variety of applications and which includes the main content of traditional theories of error of measurement and psychological tests, can be derived from the axioms of probability, without introducing “true values” and “errors.” Beginning with probability spaces (Ω, P1) and (φ, P2), the set Ω representing the outcomes of a measurement procedure and the set * representing individuals or experimental objects, it is possible to construct suitable product probability spaces and collections of random variables which can yield all results needed to describe random variability and reliability. This paper attempts to fill gaps in the mathematical derivations in many classical theories and at the same time to overcome limitations in the language of “true values” and “errors” by presenting explicitly the essential constructions required for a general probability model.


1982 ◽  
Vol 47 (3) ◽  
pp. 605-624 ◽  
Author(s):  
Douglas N. Hoover

AbstractWe show that every formula of Lω1P is equivalent to one which is a propositional combination of formulas with only one quantifier. It follows that the complete theory of a probability model is determined by the distribution of a family of random variables induced by the model. We characterize the class of distribution which can arise in such a way. We use these results together with a form of de Finetti’s theorem to prove an almost sure interpolation theorem for Lω1P.


2017 ◽  
Vol 31 (15) ◽  
pp. 1750117
Author(s):  
Marco A. S. Trindade

In this work, we prove a weak law and a strong law of large numbers through the concept of [Formula: see text]-product for dependent random variables, in the context of nonextensive statistical mechanics. Applications for the consistency of estimators are presented and connections with stochastic processes are discussed.


Author(s):  
Robert J Marks II

In this Chapter, we present application of Fourier analysis to probability, random variables and stochastic processes [1089, 1097, 1387, 1329]. Arandom variable, X, is the assignment of a number to the outcome of a random experiment. We can, for example, flip a coin and assign an outcome of a heads as X = 1 and a tails X = 0. Often the number is equated to the numerical outcome of the experiment, such as the number of dots on the face of a rolled die or the measurement of a voltage in a noisy circuit. The cumulative distribution function is defined by FX(x) = Pr[X ≤ x]. (4.1) The probability density function is the derivative fX(x) = d /dxFX(x). Our treatment of random variables focuses on use of Fourier analysis. Due to this viewpoint, the development we use is unconventional and begins immediately in the next section with discussion of properties of the probability density function.


1987 ◽  
Vol 24 (02) ◽  
pp. 347-354 ◽  
Author(s):  
Guy Fayolle ◽  
Rudolph Iasnogorodski

In this paper, we present some simple new criteria for the non-ergodicity of a stochastic process (Yn ), n ≧ 0 in discrete time, when either the upward or downward jumps are majorized by i.i.d. random variables. This situation is encountered in many practical situations, where the (Yn ) are functionals of some Markov chain with countable state space. An application to the exponential back-off protocol is described.


2000 ◽  
Vol 33 (16) ◽  
pp. 403-414
Author(s):  
Vladimir I. Zubov

Sign in / Sign up

Export Citation Format

Share Document