Stability Theorems and Estimates of the Rate of Convergence of the Components of Factorizations for Walks Defined on Markov Chains

1981 ◽  
Vol 25 (2) ◽  
pp. 325-334 ◽  
Author(s):  
K. A. Borovkov
2003 ◽  
Vol 40 (04) ◽  
pp. 970-979 ◽  
Author(s):  
A. Yu. Mitrophanov

For finite, homogeneous, continuous-time Markov chains having a unique stationary distribution, we derive perturbation bounds which demonstrate the connection between the sensitivity to perturbations and the rate of exponential convergence to stationarity. Our perturbation bounds substantially improve upon the known results. We also discuss convergence bounds for chains with diagonalizable generators and investigate the relationship between the rate of convergence and the sensitivity of the eigenvalues of the generator; special attention is given to reversible chains.


1988 ◽  
Vol 25 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Jean Johnson ◽  
Dean Isaacson

Sufficient conditions for strong ergodicity of discrete-time non-homogeneous Markov chains have been given in several papers. Conditions have been given using the left eigenvectors ψn of Pn(ψ nPn = ψ n) and also using the limiting behavior of Pn. In this paper we consider the analogous results in the case of continuous-time Markov chains where one uses the intensity matrices Q(t) instead of P(s, t). A bound on the rate of convergence of certain strongly ergodic chains is also given.


2005 ◽  
Vol 42 (4) ◽  
pp. 1003-1014 ◽  
Author(s):  
A. Yu. Mitrophanov

For uniformly ergodic Markov chains, we obtain new perturbation bounds which relate the sensitivity of the chain under perturbation to its rate of convergence to stationarity. In particular, we derive sensitivity bounds in terms of the ergodicity coefficient of the iterated transition kernel, which improve upon the bounds obtained by other authors. We discuss convergence bounds that hold in the case of finite state space, and consider numerical examples to compare the accuracy of different perturbation bounds.


Sign in / Sign up

Export Citation Format

Share Document