Applications of differential inequalities to bounding the rate of convergence for continuous-time Markov chains

Author(s):  
Alexander Zeifman ◽  
Yacov Satin ◽  
Ksenia Kiseleva ◽  
Anastasia Kryukova
2003 ◽  
Vol 40 (04) ◽  
pp. 970-979 ◽  
Author(s):  
A. Yu. Mitrophanov

For finite, homogeneous, continuous-time Markov chains having a unique stationary distribution, we derive perturbation bounds which demonstrate the connection between the sensitivity to perturbations and the rate of exponential convergence to stationarity. Our perturbation bounds substantially improve upon the known results. We also discuss convergence bounds for chains with diagonalizable generators and investigate the relationship between the rate of convergence and the sensitivity of the eigenvalues of the generator; special attention is given to reversible chains.


1988 ◽  
Vol 25 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Jean Johnson ◽  
Dean Isaacson

Sufficient conditions for strong ergodicity of discrete-time non-homogeneous Markov chains have been given in several papers. Conditions have been given using the left eigenvectors ψn of Pn(ψ nPn = ψ n) and also using the limiting behavior of Pn. In this paper we consider the analogous results in the case of continuous-time Markov chains where one uses the intensity matrices Q(t) instead of P(s, t). A bound on the rate of convergence of certain strongly ergodic chains is also given.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1752
Author(s):  
Alexander Zeifman ◽  
Yacov Satin ◽  
Alexander Sipin

We apply the method of differential inequalities for the computation of upper bounds for the rate of convergence to the limiting regime for one specific class of (in)homogeneous continuous-time Markov chains. Such an approach seems very general; the corresponding description and bounds were considered earlier for finite Markov chains with analytical in time intensity functions. Now we generalize this method to locally integrable intensity functions. Special attention is paid to the situation of a countable Markov chain. To obtain these estimates, we investigate the corresponding forward system of Kolmogorov differential equations as a differential equation in the space of sequences l1.


2001 ◽  
Vol 38 (1) ◽  
pp. 262-269 ◽  
Author(s):  
Geoffrey Pritchard ◽  
David J. Scott

We consider the problem of estimating the rate of convergence to stationarity of a continuous-time, finite-state Markov chain. This is done via an estimator of the second-largest eigenvalue of the transition matrix, which in turn is based on conventional inference in a parametric model. We obtain a limiting distribution for the eigenvalue estimator. As an example we treat an M/M/c/c queue, and show that the method allows us to estimate the time to stationarity τ within a time comparable to τ.


2001 ◽  
Vol 38 (01) ◽  
pp. 262-269 ◽  
Author(s):  
Geoffrey Pritchard ◽  
David J. Scott

We consider the problem of estimating the rate of convergence to stationarity of a continuous-time, finite-state Markov chain. This is done via an estimator of the second-largest eigenvalue of the transition matrix, which in turn is based on conventional inference in a parametric model. We obtain a limiting distribution for the eigenvalue estimator. As an example we treat an M/M/c/c queue, and show that the method allows us to estimate the time to stationarity τ within a time comparable to τ.


2008 ◽  
Vol 49 (4) ◽  
pp. 463-478 ◽  
Author(s):  
YUANYUAN LIU ◽  
HANJUN ZHANG ◽  
YIQIANG ZHAO

AbstractIn this paper, we investigate computable lower bounds for the best strongly ergodic rate of convergence of the transient probability distribution to the stationary distribution for stochastically monotone continuous-time Markov chains and reversible continuous-time Markov chains, using a drift function and the expectation of the first hitting time on some state. We apply these results to birth–death processes, branching processes and population processes.


1988 ◽  
Vol 25 (01) ◽  
pp. 34-42 ◽  
Author(s):  
Jean Johnson ◽  
Dean Isaacson

Sufficient conditions for strong ergodicity of discrete-time non-homogeneous Markov chains have been given in several papers. Conditions have been given using the left eigenvectors ψ n of Pn (ψ nPn = ψ n ) and also using the limiting behavior of Pn. In this paper we consider the analogous results in the case of continuous-time Markov chains where one uses the intensity matrices Q(t) instead of P(s, t). A bound on the rate of convergence of certain strongly ergodic chains is also given.


2003 ◽  
Vol 40 (4) ◽  
pp. 970-979 ◽  
Author(s):  
A. Yu. Mitrophanov

For finite, homogeneous, continuous-time Markov chains having a unique stationary distribution, we derive perturbation bounds which demonstrate the connection between the sensitivity to perturbations and the rate of exponential convergence to stationarity. Our perturbation bounds substantially improve upon the known results. We also discuss convergence bounds for chains with diagonalizable generators and investigate the relationship between the rate of convergence and the sensitivity of the eigenvalues of the generator; special attention is given to reversible chains.


Sign in / Sign up

Export Citation Format

Share Document