scholarly journals Higher Order Strong Approximations of Semilinear Stochastic Wave Equation with Additive Space-time White Noise

2014 ◽  
Vol 36 (6) ◽  
pp. A2611-A2632 ◽  
Author(s):  
Xiaojie Wang ◽  
Siqing Gan ◽  
Jingtian Tang
2018 ◽  
Vol 18 (05) ◽  
pp. 1850036 ◽  
Author(s):  
M. Khalil ◽  
C. A. Tudor ◽  
M. Zili

We study the asymptotic behavior of the spatial quadratic variation for the solution to the stochastic wave equation driven by additive space-time white noise. We prove that the sequence of its renormalized quadratic variations satisfies a central limit theorem (CLT for short). We obtain the rate of convergence for this CLT via the Stein–Malliavin calculus and we also discuss some consequences.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Alexei Cheviakov ◽  
Denys Dutykh ◽  
Aidar Assylbekuly

We investigate a family of higher-order Benjamin–Bona–Mahony-type equations, which appeared in the course of study towards finding a Galilei-invariant, energy-preserving long wave equation. We perform local symmetry and conservation laws classification for this family of Partial Differential Equations (PDEs). The analysis reveals that this family includes a special equation which admits additional, higher-order local symmetries and conservation laws. We compute its solitary waves and simulate their collisions. The numerical simulations show that their collision is elastic, which is an indication of its S−integrability. This particular PDE turns out to be a rescaled version of the celebrated Camassa–Holm equation, which confirms its integrability.


2013 ◽  
Vol 34 (1) ◽  
pp. 390-434 ◽  
Author(s):  
S. Falletta ◽  
G. Monegato ◽  
L. Scuderi

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1251
Author(s):  
Wensheng Wang

We investigate spatial moduli of non-differentiability for the fourth-order linearized Kuramoto–Sivashinsky (L-KS) SPDEs and their gradient, driven by the space-time white noise in one-to-three dimensional spaces. We use the underlying explicit kernels and symmetry analysis, yielding spatial moduli of non-differentiability for L-KS SPDEs and their gradient. This work builds on the recent works on delicate analysis of regularities of general Gaussian processes and stochastic heat equation driven by space-time white noise. Moreover, it builds on and complements Allouba and Xiao’s earlier works on spatial uniform and local moduli of continuity of L-KS SPDEs and their gradient.


Sign in / Sign up

Export Citation Format

Share Document