symmetry and conservation laws
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yi Zhang

The Mei symmetry and conservation laws for time-scale nonshifted Hamilton equations are explored, and the Mei symmetry theorem is presented and proved. Firstly, the time-scale Hamilton principle is established and extended to the nonconservative case. Based on the Hamilton principles, the dynamic equations of time-scale nonshifted constrained mechanical systems are derived. Secondly, for the time-scale nonshifted Hamilton equations, the definitions of Mei symmetry and their criterion equations are given. Thirdly, Mei symmetry theorems are proved, and the Mei-type conservation laws in time-scale phase space are driven. Two examples show the validity of the results.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Alexei Cheviakov ◽  
Denys Dutykh ◽  
Aidar Assylbekuly

We investigate a family of higher-order Benjamin–Bona–Mahony-type equations, which appeared in the course of study towards finding a Galilei-invariant, energy-preserving long wave equation. We perform local symmetry and conservation laws classification for this family of Partial Differential Equations (PDEs). The analysis reveals that this family includes a special equation which admits additional, higher-order local symmetries and conservation laws. We compute its solitary waves and simulate their collisions. The numerical simulations show that their collision is elastic, which is an indication of its S−integrability. This particular PDE turns out to be a rescaled version of the celebrated Camassa–Holm equation, which confirms its integrability.


2021 ◽  
Vol 62 (5) ◽  
pp. 052901
Author(s):  
Enrico Massa ◽  
Enrico Pagani

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jin-Yue Chen ◽  
Yi Zhang

The time-scale version of Noether symmetry and conservation laws for three Birkhoffian mechanics, namely, nonshifted Birkhoffian systems, nonshifted generalized Birkhoffian systems, and nonshitfed constrained Birkhoffian systems, are studied. Firstly, on the basis of the nonshifted Pfaff-Birkhoff principle on time scales, Birkhoff’s equations for nonshifted variables are deduced; then, Noether’s quasi-symmetry for the nonshifted Birkhoffian system is proved and time-scale conserved quantity is presented. Secondly, the nonshifted generalized Pfaff-Birkhoff principle on time scales is proposed, the generalized Birkhoff’s equations for nonshifted variables are derived, and Noether’s symmetry for the nonshifted generalized Birkhoffian system is established. Finally, for the nonshifted constrained Birkhoffian system, Noether’s symmetry and time-scale conserved quantity are proposed and proved. The validity of the result is proved by examples.


Author(s):  
Krishnendu Haldar ◽  
Dimitris C. Lagoudas

Magnetic shape memory alloys (MSMAs) have drawn significant research attention as potential high actuation energy multi-functional materials. Such a dissipative material system can be considered as a solid continuum interacting with a magnetic field. A continuum-based phenomenological model provides a magneto-mechanical system of equations that simulates and predicts primary MSMA behaviours. In this work, we investigate the local symmetries of the MSMA system equations through the Lie group analysis. Symmetry breaking due to stable-unstable transition is analysed. The conservation laws are derived, and their physical meaning is scrutinized.


2018 ◽  
Vol 24 (1) ◽  
pp. 34-46
Author(s):  
Gangwei Wang ◽  
Qi Wang ◽  
Yingwei Chen

In this paper, an integrable KP equation is studied using symmetry and conservation laws. First, on the basis of various cases of coefficients, we construct the infinitesimal generators. For the special case, we get the corresponding geometry vector fields, and then from known soliton solutions we derive new soliton solutions. In addition, the explicit power series solutions are derived. Lastly, nonlinear self-adjointness and conservation laws are constructed with symmetries.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750042 ◽  
Author(s):  
Maba Boniface Matadi

In this paper, three-dimensional system of the tuberculosis (TB) model is reduced into a two-dimensional first-order and one-dimensional second-order differential equations. We use the method of Jacobi last multiplier to construct linear Lagrangians of systems of two first-order ordinary differential equations and nonlinear Lagrangian of the corresponding single second-order equation. The Noether's theorem is used for determining conservation laws. We apply the techniques of symmetry analysis to a model to identify the combinations of parameters which lead to the possibility of the linearization of the system and provide the corresponding solutions.


Sign in / Sign up

Export Citation Format

Share Document