scholarly journals Mean-Field Limit of a Stochastic Particle System Smoothly Interacting Through Threshold Hitting-Times and Applications to Neural Networks with Dendritic Component

2015 ◽  
Vol 47 (5) ◽  
pp. 3884-3916 ◽  
Author(s):  
J. Inglis ◽  
D. Talay
2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Hui Huang ◽  
Jinniao Qiu

AbstractIn this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions $$d=2,3$$ d = 2 , 3 . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.


2020 ◽  
Vol 181 (5) ◽  
pp. 1915-1965
Author(s):  
Hui Huang ◽  
Jian-Guo Liu ◽  
Peter Pickl

AbstractWe rigorously justify the mean-field limit of an N-particle system subject to Brownian motions and interacting through the Newtonian potential in $${\mathbb {R}}^3$$ R 3 . Our result leads to a derivation of the Vlasov–Poisson–Fokker–Planck (VPFP) equations from the regularized microscopic N-particle system. More precisely, we show that the maximal distance between the exact microscopic trajectories and the mean-field trajectories is bounded by $$N^{-\frac{1}{3}+\varepsilon }$$ N - 1 3 + ε ($$\frac{1}{63}\le \varepsilon <\frac{1}{36}$$ 1 63 ≤ ε < 1 36 ) with a blob size of $$N^{-\delta }$$ N - δ ($$\frac{1}{3}\le \delta <\frac{19}{54}-\frac{2\varepsilon }{3}$$ 1 3 ≤ δ < 19 54 - 2 ε 3 ) up to a probability of $$1-N^{-\alpha }$$ 1 - N - α for any $$\alpha >0$$ α > 0 . Moreover, we prove the convergence rate between the empirical measure associated to the regularized particle system and the solution of the VPFP equations. The technical novelty of this paper is that our estimates rely on the randomness coming from the initial data and from the Brownian motions.


2021 ◽  
Vol 20 (1) ◽  
pp. 165-207
Author(s):  
François Baccelli ◽  
Thibaud Taillefumier

Author(s):  
Rémi Catellier ◽  
Yves D’Angelo ◽  
Cristiano Ricci

The propagation of chaos property for a system of interacting particles, describing the spatial evolution of a network of interacting filaments is studied. The creation of a network of mycelium is analyzed as representative case, and the generality of the modeling choices are discussed. Convergence of the empirical density for the particle system to its mean-field limit is proved, and a result of regularity for the solution is presented.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


2016 ◽  
Vol 166 (2) ◽  
pp. 211-229 ◽  
Author(s):  
Li Chen ◽  
Simone Göttlich ◽  
Qitao Yin

Sign in / Sign up

Export Citation Format

Share Document