interacting particles
Recently Published Documents


TOTAL DOCUMENTS

946
(FIVE YEARS 118)

H-INDEX

53
(FIVE YEARS 5)

Author(s):  
Yuhui Luo ◽  
Chunhua Zeng ◽  
Baowen Li

Abstract We numerically investigate the resonance of the underdamped scaled Brownian motion in a bistable system for both cases of a single particle and interacting particles. Through the velocity autocorrelation function (VACF) and mean squared displacement (MSD) of a single particle, we find that for the steady state, diffusions are ballistic at short times and then become normal for most of parameter regimes. However, for certain parameter regimes, both VACF and MSD suggest that the transition between superdiffusion and subdiffusion takes place at intermediate times, and diffusion becomes normal at long times. Via the power spectrum density corresponding to the transitions, we find that there exists a nontrivial resonance. For interacting particles, we find that the interaction between the probe particle and other particles can lead to the resonance, too. Thus we theoretically propose the system with the Brownian particle as a probe, which can detect the temperature of the system and identify the number of the particles or the types of different coupling strengths in the system. The probe is potentially useful for detecting microscopic and nanometer-scale particles and for identifying cancer cells or healthy ones.


2021 ◽  
pp. 100914
Author(s):  
Ayman Hallal ◽  
Giuseppe Messineo ◽  
Mauricio Diaz Ortiz ◽  
Joseph Gleason ◽  
Harold Hollis ◽  
...  

Author(s):  
Rémi Catellier ◽  
Yves D’Angelo ◽  
Cristiano Ricci

The propagation of chaos property for a system of interacting particles, describing the spatial evolution of a network of interacting filaments is studied. The creation of a network of mycelium is analyzed as representative case, and the generality of the modeling choices are discussed. Convergence of the empirical density for the particle system to its mean-field limit is proved, and a result of regularity for the solution is presented.


Author(s):  
Telles Timóteo Timóteo Da Silva ◽  
Marcelo Dutra Fragoso

Abstract In this paper we put forward a Generalized Ohta-Kimura ladder model (GOKM) which bears a strong liaison with the so-called jump-type Fleming-Viot process (JFVP). The novelty here, when we compare with the classical Ohta-Kimura model, is that we now have an operator which allows multiple interaction among the individuals. It has to do with a generalized branching mechanism: m individual types extinguish and one individual type splits into m copies. The system of evolution equations arising from GOKM can be seen as a system of n-dimensional Kolmogorov forward equations (or Fokker-Planck equations). Besides the interest in its own right a favorable feature of GOKM, vis-`a-vis JFVP, is that its analysis requires a more amenable armory of concepts and mathematical technique to analyze some relevant issues such as correlation, indistinguishability of individuals and stationarity. In addition, as a by product, we show that the connection between Ohta-Kimura Model and diffusion with resetting, as previously structured in [6], can be extended to our setting.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7032
Author(s):  
Lucie Gembalová ◽  
Libor M. Hlaváč ◽  
Sławomir Spadło ◽  
Vladan Geryk ◽  
Luka Oros

The aim of the research was to investigate changes of abrasive grains on metals observing the kerf walls produced by the Abrasive Water Jet (AWJ). The microscopy observations of the sidewalls of kerfs cut by the AWJ in several metal materials with an identical thickness of 10 mm are presented. The observed sizes of abrasive grains were compared with the results of research aimed at the disintegration of the abrasive grains during the mixing process in the cutting head during the injection AWJ creation. Some correlations were discovered and verified. The kerf walls observations show the size of material disintegration caused by the individual abrasive grains and also indicate the size of these grains. One part of this short communication is devoted to a critical look at some of the conclusions of the older published studies, namely regarding the correlation of the number of interacting particles with the acoustic emissions measured on cut materials. The discussion is aimed at the abrasive grain size after the mixing process and changes of this size in the interaction with the target material.


Author(s):  
Ricardo Peredo-Ortiz ◽  
Pablo Fernando Zubieta Rico ◽  
Ernesto Carlos Cortés Morales ◽  
Gabriel Pérez-Ángel ◽  
Thomas Voigtmann ◽  
...  

Abstract The recently developed non-equilibrium self-consistent generalized Langevin equation theory of the dynamics of liquids of non-spherically interacting particles [J. Phys. Chem. B 120, 7975 (2016)] is applied to the description of the irreversible relaxation of a thermally and mechanically quenched dipolar fluid. Specifically, we consider a dipolar hard-sphere liquid quenched (at tw = 0) from full equilibrium conditions towards different ergodic–non-ergodic transitions. Qualitatively different scenarios are predicted by the theory for the time evolution of the system after the quench (tw > 0), that depend on both the kind of transition approached and the specific features of the protocol of preparation. Each of these scenarios is characterized by the kinetics displayed by a set of structural correlations, and also by the development of two characteristic times describing the relaxation of the translational and rotational dynamics, allowing us to highlight the crossover from equilibration to aging in the system and leading to the prediction of different underlying mechanisms and relaxation laws for the dynamics at each of the glass transitions explored.


2021 ◽  
Vol 2052 (1) ◽  
pp. 012055
Author(s):  
A Yu Zakharov ◽  
V V Zubkov

Abstract The microscopic deterministic mechanism of the irreversible equilibration process in a relativistic classical system of interacting particles has been established.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
P. Agrawal ◽  
M. Bauer ◽  
J. Beacham ◽  
A. Berlin ◽  
A. Boyarsky ◽  
...  

AbstractWith the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.


Sign in / Sign up

Export Citation Format

Share Document