scholarly journals Global Solutions to the Three-Dimensional Full Compressible Navier--Stokes Equations with Vacuum at Infinity in Some Classes of Large Data

2017 ◽  
Vol 49 (1) ◽  
pp. 162-221 ◽  
Author(s):  
Huanyao Wen ◽  
Changjiang Zhu
2006 ◽  
Vol 2006 ◽  
pp. 1-14 ◽  
Author(s):  
Eduard Feireisl ◽  
Josef Málek

We establish long-time and large-data existence of a weak solution to the problem describing three-dimensional unsteady flows of an incompressible fluid, where the viscosity and heat-conductivity coefficients vary with the temperature. The approach reposes on considering the equation for the total energy rather than the equation for the temperature. We consider the spatially periodic problem.


2020 ◽  
Vol 31 (05) ◽  
pp. 2050038
Author(s):  
Jianwei Yang ◽  
Gaohui Peng ◽  
Huiyun Hao ◽  
Fengzhen Que

In this paper, the barotropic compressible quantum Navier–Stokes equations with a density-dependent viscosity in a three-dimensional torus is studied. By introducing a cold pressure to handle the convection term, we prove the global-in-time existence of weak solutions to quantum Navier–Stokes equations for large data in the sense of standard definition.


Analysis ◽  
2015 ◽  
Vol 35 (3) ◽  
Author(s):  
Isabelle Gallagher

AbstractIn these notes we present some results concerning the existence of global smooth solutions to the three-dimensional Navier–Stokes equations set in the whole space. We are particularly interested in the stability of the set of initial data giving rise to a global smooth solution.


2019 ◽  
Vol 150 (4) ◽  
pp. 1671-1698 ◽  
Author(s):  
K. Abe ◽  
G. Seregin

AbstractWe study an initial-boundary value problem of the three-dimensional Navier-Stokes equations in the exterior of a cylinder $\Pi =\{x=(x_{h}, x_3)\ \vert \vert x_{h} \vert \gt 1\}$, subject to the slip boundary condition. We construct unique global solutions for axisymmetric initial data $u_0\in L^{3}\cap L^{2}(\Pi )$ satisfying the decay condition of the swirl component $ru^{\theta }_{0}\in L^{\infty }(\Pi )$.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Sign in / Sign up

Export Citation Format

Share Document