scholarly journals Control of Nonlinear Wave Solutions to Neural Field Equations

2019 ◽  
Vol 18 (2) ◽  
pp. 1015-1036 ◽  
Author(s):  
Alexander Ziepke ◽  
Steffen Martens ◽  
Harald Engel
2016 ◽  
Vol 26 (10) ◽  
pp. 1919-1954 ◽  
Author(s):  
Jian Fang ◽  
Grégory Faye

We study the existence of traveling wave solutions and spreading properties for single-layer delayed neural field equations. We focus on the case where the kinetic dynamics are of monostable type and characterize the invasion speeds as a function of the asymptotic decay of the connectivity kernel. More precisely, we show that for exponentially bounded kernels the minimal speed of traveling waves exists and coincides with the spreading speed, which further can be explicitly characterized under a KPP type condition. We also investigate the case of algebraically decaying kernels where we prove the non-existence of traveling wave solutions and show the level sets of the solutions eventually locate in-between two exponential functions of time. The uniqueness of traveling waves modulo translation is also obtained.


Author(s):  
Rachid Atmania ◽  
Evgenii O. Burlakov ◽  
Ivan N. Malkov

The article is devoted to investigation of integro-differential equation with the Hammerstein integral operator of the following form: ∂_t u(t,x)=-τu(t,x,x_f )+∫_(R^2)▒〖ω(x-y)f(u(t,y) )dy, t≥0, x∈R^2 〗. The equation describes the dynamics of electrical potentials u(t,x) in a planar neural medium and has the name of neural field equation.We study ring solutions that are represented by stationary radially symmetric solutions corresponding to the active state of the neural medium in between two concentric circles and the rest state elsewhere in the neural field. We suggest conditions of existence of ring solutions as well as a method of their numerical approximation. The approach used relies on the replacement of the probabilistic neuronal activation function f that has sigmoidal shape by a Heaviside-type function. The theory is accompanied by an example illustrating the procedure of investigation of ring solutions of a neural field equation containing a typically used in the neuroscience community neuronal connectivity function that allows taking into account both excitatory and inhibitory interneuronal interactions. Similar to the case of bump solutions (i. e. stationary solutions of neural field equations, which correspond to the activated area in the neural field represented by the interior of some circle) at a high values of the neuronal activation threshold there coexist a broad ring and a narrow ring solutions that merge together at the critical value of the activation threshold, above which there are no ring solutions.


2020 ◽  
Vol 137 (6) ◽  
pp. 1061-1067
Author(s):  
U.M. Abdelsalam ◽  
M.S. Zobaer ◽  
H. Akther ◽  
M.G.M. Ghazal ◽  
M.M. Fares

2010 ◽  
Vol 20 (10) ◽  
pp. 3193-3208 ◽  
Author(s):  
RUI LIU

In this paper, we consider the generalized b-equation ut - uxxt + (b + 1)u2ux = buxuxx + uxxx. For a given constant wave speed, we investigate the coexistence of multifarious exact nonlinear wave solutions including smooth solitary wave solution, peakon wave solution, smooth periodic wave solution, single singular wave solution and periodic singular wave solution. Not only is the coexistence shown, but the concrete expressions are given via phase analysis and special integrals. From our work, it can be seen that the types of exact nonlinear wave solutions of the generalized b-equation are more than that of the b-equation. Many previous results are turned to our special cases. Also, some conjectures and questions are presented.


Sign in / Sign up

Export Citation Format

Share Document