scholarly journals A Multilayer Nonlinear Elimination Preconditioned Inexact Newton Method for Steady-State Incompressible Flow Problems in Three Dimensions

2020 ◽  
Vol 42 (6) ◽  
pp. B1404-B1428
Author(s):  
Li Luo ◽  
Xiao-Chuan Cai ◽  
Zhengzheng Yan ◽  
Lei Xu ◽  
David E. Keyes
2014 ◽  
Vol 31 (12) ◽  
pp. 2618 ◽  
Author(s):  
Marco Salucci ◽  
Giacomo Oliveri ◽  
Andrea Randazzo ◽  
Matteo Pastorino ◽  
Andrea Massa

The equations of the steady state, compressible inviscid gaseous flow are linearized in a form suitable for application to nozzles of the Laval type. The procedure in the supersonic phase is verified by comparing solutions so obtained with those derived by the method of characteristics in two and three dimensions. Likewise, the solutions in the transonic phase are com pared with those obtained by other investigators. The linearized equation is then used to investigate the nat re of non-symmetric flow in rocket nozzles. It is found that if the flow from the combustion chamber into the nozzle is non-symmetric, the magnitude and direction of the turning couple produced by the emergent jet is dependent on the profile of the nozzle and it is possible to design profiles such that the turning couples or lateral forces are zero. The optimum nozzle so designed is independent of the pressure and also of the magnitude of the non-symmetry of the entry flow. The formulae by which they are obtained have been checked by extensive static and projection tests with simulated rocket test vehicles which are described in this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Weiping Shen

We propose a generalized inexact Newton method for solving the inverse eigenvalue problems, which includes the generalized Newton method as a special case. Under the nonsingularity assumption of the Jacobian matrices at the solutionc*, a convergence analysis covering both the distinct and multiple eigenvalue cases is provided and the quadratic convergence property is proved. Moreover, numerical tests are given in the last section and comparisons with the generalized Newton method are made.


2017 ◽  
Vol 32 (4) ◽  
pp. 2695-2703 ◽  
Author(s):  
Xue Li ◽  
Fangxing Li ◽  
Haoyu Yuan ◽  
Hantao Cui ◽  
Qinran Hu

Sign in / Sign up

Export Citation Format

Share Document