scholarly journals Infeasibility and Error Bound Imply Finite Convergence of Alternating Projections

2021 ◽  
Vol 31 (4) ◽  
pp. 2863-2892
Author(s):  
Roger Behling ◽  
Yunier Bello-Cruz ◽  
Luiz-Rafael Santos
2020 ◽  
Vol 14 (8) ◽  
pp. 1975-1987
Author(s):  
Heinz H. Bauschke ◽  
Regina S. Burachik ◽  
Daniel B. Herman ◽  
C. Yalçın Kaya

2021 ◽  
Vol 115 ◽  
pp. 107917
Author(s):  
Ángel Carmona-Poyato ◽  
Nicolás Luis Fernández-Garcia ◽  
Francisco José Madrid-Cuevas ◽  
Antonio Manuel Durán-Rosal

2019 ◽  
Vol 17 (1) ◽  
pp. 1599-1614
Author(s):  
Zhiwu Hou ◽  
Xia Jing ◽  
Lei Gao

Abstract A new error bound for the linear complementarity problem (LCP) of Σ-SDD matrices is given, which depends only on the entries of the involved matrices. Numerical examples are given to show that the new bound is better than that provided by García-Esnaola and Peña [Linear Algebra Appl., 2013, 438, 1339–1446] in some cases. Based on the obtained results, we also give an error bound for the LCP of SB-matrices. It is proved that the new bound is sharper than that provided by Dai et al. [Numer. Algor., 2012, 61, 121–139] under certain assumptions.


Bernoulli ◽  
2015 ◽  
Vol 21 (1) ◽  
pp. 335-359 ◽  
Author(s):  
Louis H.Y. Chen ◽  
Xiao Fang

Author(s):  
Carlo Alberto De Bernardi ◽  
Enrico Miglierina

AbstractThe 2-sets convex feasibility problem aims at finding a point in the nonempty intersection of two closed convex sets A and B in a Hilbert space H. The method of alternating projections is the simplest iterative procedure for finding a solution and it goes back to von Neumann. In the present paper, we study some stability properties for this method in the following sense: we consider two sequences of closed convex sets $$\{A_n\}$$ { A n } and $$\{B_n\}$$ { B n } , each of them converging, with respect to the Attouch-Wets variational convergence, respectively, to A and B. Given a starting point $$a_0$$ a 0 , we consider the sequences of points obtained by projecting on the “perturbed” sets, i.e., the sequences $$\{a_n\}$$ { a n } and $$\{b_n\}$$ { b n } given by $$b_n=P_{B_n}(a_{n-1})$$ b n = P B n ( a n - 1 ) and $$a_n=P_{A_n}(b_n)$$ a n = P A n ( b n ) . Under appropriate geometrical and topological assumptions on the intersection of the limit sets, we ensure that the sequences $$\{a_n\}$$ { a n } and $$\{b_n\}$$ { b n } converge in norm to a point in the intersection of A and B. In particular, we consider both when the intersection $$A\cap B$$ A ∩ B reduces to a singleton and when the interior of $$A \cap B$$ A ∩ B is nonempty. Finally we consider the case in which the limit sets A and B are subspaces.


Sign in / Sign up

Export Citation Format

Share Document