On the fine structure of sieve tubes and the physiology of assimilate transport in Alaria marginata

1975 ◽  
Vol 53 (9) ◽  
pp. 861-876 ◽  
Author(s):  
Klaus Schmitz ◽  
L. M. Srivastava

Alaria marginata Postels and Ruprecht has a sieve tube system which extends through the lamina, especially the midrib, and through the stipe. The sieve elements originate from the innermost cortex cells and are nucleate, highly vacuolated cells that contain the usual cell organelles and membrane systems. The plastids and mitochondria show some special features in their morphology and fine structure. P protein is absent. Sieve pores, 0.11–0.3 μm in diameter, occur in cross walls between two sieve elements. They are lined by plasmalemma, and the cytoplasms of the two cells are interconnected through them. Long-distance transport of photo-assimilate follows the source–sink relationship; but its normal basipetal direction can be reversed by creating "artificial" sinks. Translocation velocity is in the range of 25 to 40 cm/h. The translocate consists mainly of mannitol and free amino acids, which were analyzed qualitatively and quantitatively. Double-labeling experiments with 32P and 14C indicate that inorganic ions are not translocated together with the 14C-labeled photoassimilates and probably move only by diffusion.

1972 ◽  
Vol 50 (4) ◽  
pp. 839-846 ◽  
Author(s):  
A. P. Singh ◽  
L. M. Srivastava

The differentiation of sieve elements, companion cells, and vascular parenchyma in leaf bundles of corn is described. The sieve elements have plastids with distinctive crystalline inclusions, lack P-protein, and have nacreous walls in which the predominant orientation of microfibrils seems to be at right angles to the length of the cell. The companion and vascular parenchyma cells have numerous, well-developed mitochondria. These and other results are discussed in relation to long distance transport in the sieve elements.


Author(s):  
James Cronshaw

Long distance transport in plants takes place in phloem tissue which has characteristic cells, the sieve elements. At maturity these cells have sieve areas in their end walls with specialized perforations. They are associated with companion cells, parenchyma cells, and in some species, with transfer cells. The protoplast of the functioning sieve element contains a high concentration of sugar, and consequently a high hydrostatic pressure, which makes it extremely difficult to fix mature sieve elements for electron microscopical observation without the formation of surge artifacts. Despite many structural studies which have attempted to prevent surge artifacts, several features of mature sieve elements, such as the distribution of P-protein and the nature of the contents of the sieve area pores, remain controversial.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Michael Knoblauch ◽  
Jan Knoblauch ◽  
Daniel L Mullendore ◽  
Jessica A Savage ◽  
Benjamin A Babst ◽  
...  

Long distance transport in plants occurs in sieve tubes of the phloem. The pressure flow hypothesis introduced by Ernst Münch in 1930 describes a mechanism of osmotically generated pressure differentials that are supposed to drive the movement of sugars and other solutes in the phloem, but this hypothesis has long faced major challenges. The key issue is whether the conductance of sieve tubes, including sieve plate pores, is sufficient to allow pressure flow. We show that with increasing distance between source and sink, sieve tube conductivity and turgor increases dramatically in Ipomoea nil. Our results provide strong support for the Münch hypothesis, while providing new tools for the investigation of one of the least understood plant tissues.


Author(s):  
Richard D. Sjolund ◽  
Chi Wang

Phloem sieve elements are the cells responsible for the long distance transport of nutrients, primarily sugars and amino acids, in higher plants. The translocation of nutrients in these cells, joined together to form long sieve tubes, is dependent on the development of high hydrostatic pressures (20 bars or higher). The dissection of plant tissues containing these phloem cells which is necessary for microscopic study usually results in the cutting of the sieve elements and a resultant loss of phloem contents due to the explosive release of the hydrostatic pressure. Wound-sealing mechanisms involving P-protein filaments and callose deposition in the cell walls rapidly seal off wound sites and prevent the loss of translocates, especially in Angiosperms. As a result, most electron microscope images of sieve elements obtained from plant organs reveal post-injury structure following wounding.


Author(s):  
R. P. Becker ◽  
J. J. Wolosewick ◽  
J. Ross-Stanton

Methodology has been introduced recently which allows transmission and scanning electron microscopy of cell fine structure in semi-thin sections unencumbered by an embedding medium. Images obtained from these “resinless” sections show a three-dimensional lattice of microtrabeculfee contiguous with cytoskeletal structures and membrane-bounded cell organelles. Visualization of these structures, especially of the matiiDra-nous components, can be facilitated by employing tannic acid in the fixation step and dessicator drying, as reported here.Albino rats were fixed by vascular perfusion with 2% glutaraldehyde or 1.5% depolymerized paraformaldehyde plus 2.5% glutaraldehyde in 0.1M sodium cacodylate (pH 7.4). Tissues were removed and minced in the fixative and stored overnight in fixative containing 4% tannic acid. The tissues were rinsed in buffer (0.2M cacodylate), exposed to 1% buffered osmium tetroxide, dehydrated in ethyl alcohol, and embedded in pure polyethylene glycol-6000 (PEG). Sections were cut on glass knives with a Sorvall MT-1 microtome and mounted onto poly-L-lysine, formvar-carbon coated grids while submerged in a solution of 95% ethanol containing 5% PEG.


Sign in / Sign up

Export Citation Format

Share Document