Bud development in Picea glauca. I. Annual growth cycle of vegetative buds and shoot elongation as they relate to date and temperature sums

1977 ◽  
Vol 55 (21) ◽  
pp. 2728-2745 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder ◽  
Hilary Langer

Vegetative buds of Picea glauca (Moench) Voss were studied throughout the annual growth cycle in several trees in 1975 and 1976 and bud development was related to lateral vegetative shoot growth, date, and temperature sums.Vegetative buds became mitotically active in mid-April at lower elevations and about 6 weeks later at higher elevations. Shoot elongation was characterized by similar smooth sigmoid curves in both years. Shoot growth was slow for the 1st month, rapid during the 2nd month, and slow again for the 3rd month and ended by early August. Temperature sums related best to percentage of shoot elongation if the end of vegetative bud dormancy was used as the starting date and 5 °C was used as the threshold temperature. Arbitrarily chosen starting dates and threshold temperatures gave temperature sums which were related to shoot elongation only when shoot elongation was nearly completed. Generally, if the end of vegetative bud dormancy is known, the number of days from that time is nearly as accurate as the more complex use of temperature sums in predicting the percentage of shoot elongation or the stage of vegetative bud development.Bud-scale initiation occurred during shoot elongation. Axillary buds were initiated in mid-May and flushing occurred when shoots had elongated to about 30% of their final length in late May or early June. The end of shoot elongation coincided with the onset of leaf initiation on all trees in both years. The change from bud-scale initiation to leaf initiation was preceded by a marked increase in apical width and a slight increase in apical height and mitotic frequency. Leaf initiation was rapid for 6 weeks then slower for the last 4 weeks. Vegetative buds became dormant in mid-October.Vegetative bud development is closely related to shoot elongation. Breaking of vegetative bud dormancy was not affected by temperature but shoot elongation and flushing were affected by temperatures which occurred after dormancy was broken.

1973 ◽  
Vol 51 (11) ◽  
pp. 2223-2231 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Vegetative apices of mature Tsnga heterophylla (Raf.) Sarg. were studied throughout the annual growth cycle. Apices become mitotically active during the last week of March. Leaf primordia elongate, causing the buds to swell, while the apex remains small and produces bud scales. Axillary buds are initiated about mid-April. Little shoot elongation occurs before vegetative buds burst in mid-May. After bud burst, rapid shoot elongation occurs for about 7 weeks, during which time the apex also elongates and the rest of the bud scales are initiated. There is a marked increase in mitotic activity in the apex during the transition from bud-scale initiation to leaf initiation, which occurs early in July when the grand phase of shoot elongation is complete. This is believed to be the time when vegetative apices undergo transition to become reproductive apices. Leaf primordia are initiated in rapid succession until mid-August, when two-thirds of the final number of leaves are initiated and the subtending shoot is fully elongated. From mid-August until mid-November, no shoot elongation occurs, leaf primordia are initiated more slowly, and mitotic activity in the apex gradually decreases. After all of the next season's leaves have been initiated, about mid-November, mitotic activity in the apex stops and the vegetative buds become dormant.


1976 ◽  
Vol 54 (3-4) ◽  
pp. 313-325 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Vegetative apices of Picea sitchensis (Bong.) Carr. were studied throughout the annual growth cycle. Apices became mitotically active late in March and the shoot axis and leaf primordia elongated causing the bud to swell. New axillary apices were initiated in mid-April and the terminal apex and new axillary apices initiated bud scales until early in July. Vegetative bud burst occurred early in June and shoot elongation was completed by mid-July. The end of shoot elongation coincided with the onset of leaf initiation. The change from bud-scale to leaf initiation was characterized by a period of increased mitotic activity and rapid apical growth. About half of the final number of leaves were initiated during the early period of rapid leaf initiation. The remaining leaf primordia were initiated more slowly over the next 3 months. Buds became dormant by mid-November.


1984 ◽  
Vol 62 (3) ◽  
pp. 475-483 ◽  
Author(s):  
John N. Owens

Vegetative buds of mature Tsuga mertensiana (Bong) Carr. (mountain hemlock) were studied throughout the annual growth cycle. Cell divisions began in vegetative buds in mid-April and shoots and leaves elongated within the bud scales causing the buds to burst in late June. Lateral shoots completed elongation by the end of July. Vegetative terminal apices from lateral branches began bud-scale initiation when bud dormancy ended. All bud scales were initiated by the end of July. Leaf primordial initiation occurred from that time until mid-October when vegetative buds again became dormant. Axillary buds were initiated on the elongating shoots in early June then followed the same phenology as vegetative terminal buds. Vegetative bud and shoot development are compared with that of western hemlock and certain other members of the Pinaceae. The relationship of bud development to shoot development is discussed for mountain hemlock and other conifers having a similar pattern of vegetative bud development.


1985 ◽  
Vol 15 (2) ◽  
pp. 354-364 ◽  
Author(s):  
J. N. Owens ◽  
J. E. Webber ◽  
S. D. Ross ◽  
R. P. Pharis

The relative importance of cell division and cell elongation to shoot elongation and the anatomical changes in vegetative terminal apices were assessed for 9- and 10-year-old seedlings of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) in response to two effective cone-induction treatments, gibberellin A4/7 (GA4/7) and root-pruning (RP). Root-pruning was done in mid-April at the start of vegetative bud swelling and GA treatments were begun at vegetative bud flushing in mid-May and continued until early July. Shoot elongation before flushing resulted primarily from cell divisions and was not affected by the RP treatment. Shoot elongation after flushing resulted primarily from cell expansion which was reduced by RP treatments. Root-pruning significantly slowed mitotic activity, apical growth, and development of vegetative terminal buds from mid-June through mid-July. Apical growth then resumed during leaf initiation and the final number of leaf primordia initiated was not affected. This resulted in a delay of 2 to 4 weeks in the transition from bud-scale to leaf initiation. Retarded terminal vegetative apices anatomically resembled latent axillary apices but were never completely inhibited. GA + RP had the same effect as RP. GA4/7 alone had no effect on shoot or apical development. These results show that RP and GA + RP significantly retard shoot elongation and terminal bud development but still allow normal development of vegetative terminal buds. Retardation of bud development by a few weeks shifts the critical morphogenetic phase of transition from bud scale to leaf initiation to a later time when endogenous and environmental conditions may differ from the normal.


1984 ◽  
Vol 14 (4) ◽  
pp. 575-588 ◽  
Author(s):  
John N. Owens

Vegetative buds of mature Abiesgrandis (Dougl.) Lindl. (grand fir) were studied throughout the annual growth cycle. Vegetative buds became mitotically active in mid-March, bud burst occurred in mid-May, and shoot elongation continued until the end of June. Bud scales were initiated during shoot elongation. In mid-April axillary buds were initiated on elongating shoots. They were initiated subterminally in the axils of the first-formed bud scales and laterally in the axils of leaf primordia. Axillary buds followed the same developmental sequence as terminal buds. The end of bud-scale initiation was preceded by rapid apical enlargement and followed by a period of rapid leaf initiation. The rate of leaf initiation slowed in mid-August but continued until vegetative buds became dormant in mid-November. Seed cones are axillary on the upper surface of vigorous shoots in the upper region of the crown. Pollen cones are axillary on the lower surface of shoots below the seed cone bearing region of the crown. Bract and microsporophyll initiation began in early to mid-July, was rapid at first, until about two-thirds of the primordia were initiated, then slower until all primordia were initiated. All bracts and ovuliferous scales were initiated and seed-cone buds became dormant in early November. All microsporophylls were initiated by early September, microsporangial development began in mid-August, and pollen-cone buds became dormant in early November. The cyclic nature of cone production in Abies is discussed in relation to cone-bud initiation, cone maturation, and photosynthate utilization in developing shoots.


1982 ◽  
Vol 60 (11) ◽  
pp. 2249-2262 ◽  
Author(s):  
John N. Owens ◽  
Hardev Singh

Vegetative terminal and axillary bud development and the time and method of cone initiation and cone bud development are described for Abies lasiocarpa (Hook.) Nutt.Cell divisions began in vegetative buds early in April. A brief period of apical enlargement was followed by bud-scale initiation for 10 weeks. Buds were initiated in the axils of some leaf primordia about the time of vegetative bud burst, 1 month after vegetative bud dormancy ended. All buds completed bud-scale initiation by the end of June, which coincided with the end of the rapid phase of lateral shoot elongation. This was followed by a 2-week period of bud differentiation, during which time few primordia were initiated, apical size increased, and apical shape and zonation changed more in reproductive than in vegetative apices. Leaf and bract initiation began by mid-July and continued until mid-October, when vegetative and seed-cone buds became dormant. Microsporophyll initiation began earlier and was nearly completed by the end of July; pollen-cone buds became dormant in mid-September.The number of cone buds is determined by the proportion of axillary bud primordia that fully developed and the pathway along which they developed. Potential seed-cone buds may become latent but more commonly differentiate into vegetative buds of low vigor. Potential pollen-cone buds frequently become latent but have not been observed to differentiate into vegetative buds. The position of the axillary bud on the shoot and of the shoot in the tree strongly influences axillary bud development in Abies.


1979 ◽  
Vol 57 (7) ◽  
pp. 687-700 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Vegetative terminal long shoot buds (TLSB) and short shoot buds (SSB) were studied throughout the annual growth cycle in several trees over several years. TLSB were not totally preformed. The dormant TLSB consisted of bud scales enclosing some basal leaves and both were borne on a broad receptacle. Centripetal to the basal leaves, a series of axial leaf primordia was borne on the flanks of the apex. After dormancy a second series of axial leaves was initiated above those initiated before dormancy. Basal and both series of axial leaves elongated during shoot elongation as the terminal apex again initiated axial leaves, bud scales, and then basal leaves. After shoot elongation the first series of axial leaves was initiated before the TLSB became dormant in October. No dimorphism occurred between predormancy and postdormancy axial leaves or axial and basal leaves. Axilliary buds were initiated in the TLSB about the time of flushing. All leaves did not bear axillary buds. All axillary buds rapidly initiated a series of bud scales and then entered a slower phase of bud-scale initiation and rapid apical enlargement. Leaf primordia then were initiated at the base of the apex and borne on the broad receptacle. Apices then differentiated into axillary long shoot buds (ALSB) or SSB. ALSB developed similarly to TLSB, whereas axillary SSB initiated leaf primordia at the base of the apex and all but the last primordia to be initiated were borne on the broad receptacle. Axillary SSB were preformed but ALSB were not completely preformed and both became dormant in mid-October. The apex of a short shoot lived for up to 8 to 10 years. In each successive year it passed through phases of bud-scale initiation and leaf initiation to form a dormant preformed SSB which flushed after overwintering. Annual short shoot elongation was about 1 mm. The LSB and SSB apices varied in shape and size during the year but apical zonation was similar in all apices. Larix vegetative bud development is compared with that found in other gymnosperms.


1986 ◽  
Vol 16 (2) ◽  
pp. 211-221 ◽  
Author(s):  
J. N. Owens ◽  
J. E. Webber ◽  
S. D. Ross ◽  
R. P. Pharis

The anatomy, mitotic frequency, size, and total insoluble carbohydrate histochemistry was studied in axillary apices from 9- and 10-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) trees after cone induction treatments of root-pruning and (or) stem injections of a gibberellin A4 and A7 (GA4/7) mixture. Axillary buds were initiated at the time of root-pruning, but root-pruning treatment had no effect on axillary bud initiation. Axillary apices from control and gibberellin-treated trees were similar and followed the normal sequence of bud-scale initiation, differentiation, and leaf initiation (described previously) and no cone buds differentiated. Early development of axillary apices from root-pruned and root-pruned, gibberellin-treated trees was normal, but development became retarded near the time of vegetative bud flush. Retarded apices were small with low mitotic frequency and developed many features characteristics of latent apices. Retardation of axillary apices continued until mid-July when normal development resumed and apices differentiated into reproductive buds or vegetative buds, or became latent. The trees in which the greatest retardation of apical development occurred during lateral shoot elongation produced the most cone buds. These results are discussed in relation to hypotheses proposed to explain how cultural and gibberellin treatments affect cone induction in the Pinaceae.


1984 ◽  
Vol 62 (3) ◽  
pp. 484-494 ◽  
Author(s):  
John N. Owens

Seed cones of Tsuga mertensiana (Bong) Carr. occur terminally on distal lateral branches and form from the differentiation of a terminal, previously vegetative apex, into a seed-cone apex. Pollen cones commonly occur on lateral branches and form from the differentiation of an undetermined axillary apex about 6 weeks after axillary bud initiation. Pollen cones also occasionally occur terminally. All cone buds began differentiation in late July after bud-scale initiation was complete and at about the end of lateral shoot elongation. Seed-cone buds initiated bracts and ovuliferous scales, but not ovules, before they became dormant at the end of October. Pollen-cone buds initiated all microsporophylls by early September. Microsporangia containing microspore mother cells differentiated before pollen-cone buds became dormant in mid-October. The time of cone-bud differentiation is related to vegetative bud and shoot development. The time and method of cone-bud differentiation is discussed in relation to T. heterophylla and other conifers having similar bud development.


Sign in / Sign up

Export Citation Format

Share Document