picea glauca
Recently Published Documents


TOTAL DOCUMENTS

907
(FIVE YEARS 88)

H-INDEX

53
(FIVE YEARS 4)

Author(s):  
Andrei Lapenis ◽  
George Robinson ◽  
Gregory B. Lawrence

Here we investigate the possible<sup></sup> future response of white spruce (Picea glauca) to a warmer climate by studying trees planted 90 years ago near the southern limit of their climate tolerance in central New York, 300 km south of the boreal forest where this species is prevalent. We employed high-frequency recording dendrometers to determine radial growth phenology of six mature white spruce trees during 2013-2017. Results demonstrate significant reductions in the length of radial growth periods inversely proportional to the number of hot days with air temperature exceeding 30 oC. During years with very hot summers, the start of radial growth began about 3 days earlier than the 2013-2017 average. However, in those same years the end of radial growth was also about 17 days earlier resulting in a shorter (70 versus 100 day), radial growth season. Abundant (350-500 mm) summer precipitation, which resulted in soil moisture values of 20-30% allowed us to dismiss drought as a factor. Instead, a likely cause of reduced radial growth was mean temperature that exceeded daily average of 30<sup> o</sup>C that lead to photoinhibition.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1355
Author(s):  
Larissa Robinov ◽  
Chris Hopkinson ◽  
Mark C. Vanderwel

Changes to historic fire and grazing regimes have been associated with the expansion of tree cover at forest–grassland boundaries. We evaluated forest expansion across a mosaic landscape in western Canada using aerial photos, airborne laser scanning, and field transects. The annual rate of forest expansion (0.12%) was on the low end of rates documented across North America and was greater from the 1970s to the 1990s than from the 1990s to 2018. Most forest expansion occurred within 50 m of established forests, and 68% of all tree regeneration in grasslands was within 15 m of the forest edge. The intensity of cattle grazing did not affect the tree regeneration density. Despite the slow pace of land cover change, grassland areas near the forest edge had an average of 20% canopy cover and 9 m canopy height, indicating the presence of tall but sporadic trees. The rate of forest expansion, density of tree regeneration, and tree cover within grasslands were all greater at lower elevations where trembling aspen (Populus tremuloides) and white spruce (Picea glauca) were the dominant tree species. We conclude that proportions of forest–grassland cover on this landscape are not expected to change dramatically in the absence of major fire over the next several decades.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8015
Author(s):  
Cyriac S. Mvolo ◽  
James D. Stewart ◽  
Christopher Helmeste ◽  
Ahmed Koubaa

The accuracy and precision with which carbon amounts have been accounted for in forests have been questioned. As countries seek to comply with agreements to reduce global warming and industries seek to maximize bioenergy potential, this matter has increased international concern. White spruce (Picea glauca (Moench) Voss) stand density management trials in the Petawawa Research Forest, Ontario, Canada, were sampled to evaluate carbon concentration variation within trees and plots of differing stand density. Sample-drying methodologies were also tested to compare freeze-dried carbon (FDC) and oven-dried carbon (ODC) measurements. The average FDC was 51.80 ± 1.19%, and the corrected freeze-dried carbon content (FDCCOR) was 51.76 ± 1.33%. The average ODC was 49.10 ± 0.92%, and the average volatile carbon fraction (Cvol) was 2.67 ± 1.71%. FDC was higher than ODC (mean of the differences = 2.52) and generally more variable. ODC significantly decreased radially and longitudinally. FDC was significantly affected by thinning, where heavy treatments resulted in the highest FDC amounts compared to medium, light, and control treatments. In addition to reducing carbon content (CC), drying influences wood CC in many ways that are still to be elucidated. The results of this study suggest that ODC should continue to be used within the bioenergy industry, while FDC must become the preferred standard for carbon accounting protocols.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1234
Author(s):  
Avi Titievsky ◽  
Yuliya A. Putintseva ◽  
Elizaveta A. Taranenko ◽  
Sofya Baskin ◽  
Natalia V. Oreshkova ◽  
...  

Repetitive elements (RE) and transposons (TE) can comprise up to 80% of some plant genomes and may be essential for regulating their evolution and adaptation. The “repeatome” information is often unavailable in assembled genomes because genomic areas of repeats are challenging to assemble and are often missing from final assembly. However, raw genomic sequencing data contain rich information about RE/TEs. Here, raw genomic NGS reads of 10 gymnosperm species were studied for the content and abundance patterns of their “repeatome”. We utilized a combination of alignment on databases of repetitive elements and de novo assembly of highly repetitive sequences from genomic sequencing reads to characterize and calculate the abundance of known and putative repetitive elements in the genomes of 10 conifer plants: Pinus taeda, Pinus sylvestris, Pinus sibirica, Picea glauca, Picea abies, Abies sibirica, Larix sibirica, Juniperus communis, Taxus baccata, and Gnetum gnemon. We found that genome abundances of known and newly discovered putative repeats are specific to phylogenetically close groups of species and match biological taxa. The grouping of species based on abundances of known repeats closely matches the grouping based on abundances of newly discovered putative repeats (kChains) and matches the known taxonomic relations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kevin L. Griffin ◽  
Stephanie C. Schmiege ◽  
Sarah G. Bruner ◽  
Natalie T. Boelman ◽  
Lee A. Vierling ◽  
...  

Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska, we studied the relationship between temperature and leaf respiration in 36 white spruce (Picea glauca) trees, sampling both the upper and lower canopy, to test two research hypotheses. The first hypothesis is that upper canopy leaves, which are more directly coupled to the atmosphere, will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second hypothesis is that saplings [stems that are 5–10cm DBH (diameter at breast height)] will have higher respiration rates than trees (stems ≥10cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43±0.19 vs. 2.41±0.14μmolm−2 s−1). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline impose a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Cui ◽  
Jian Zhao ◽  
Ying Gao ◽  
Ruirui Zhao ◽  
Jinfeng Zhang ◽  
...  

Conifers are the world's major source of timber and pulpwood and have great economic and ecological value. Currently, little research on the application of CRISPR/Cas9, the commonly used genome-editing tool in angiosperms, has been reported in coniferous species. An efficient CRISPR/Cas9 system based on somatic embryogenesis (SEis) suitable for conifers could benefit both fundamental and applied research in these species. In this study, the SpCas9 gene was optimized based on codon bias in white spruce, and a spruce U6 promoter was cloned and function-validated for use in a conifer specific CRISPR/Cas9 toolbox, i.e., PgCas9/PaU6. With this toolbox, a genome-editing vector was constructed to target the DXS1 gene of white spruce. By Agrobacterium-mediated transformation, the genome-editing vector was then transferred into embryogenic tissue of white spruce. Three resistant embryogenic tissues were obtained and used for regenerating plants via SEis. Albino somatic embryo (SE) plants with mutations in DXS1 were obtained in all of the three events, and the ratios of the homozygous and biallelic mutants in the 18 albino mutants detected were 22.2% in both cases. Green plants with mutations in DXS1 were also produced, and the ratios of the DXS1 mutants to the total green plants were 7.9, 28, and 13.5%, respectively, among the three events. Since 22.7% of the total 44 mutants were edited at both of the target sites 1 and 2, the CRISPR/Cas9 toolbox in this research could be used for multi-sites genome editing. More than 2,000 SE plants were regenerated in vitro after genome editing, and part of them showed differences in plant development. Both chimerism and mosaicism were found in the SE plants of white spruce after genome editing with the CRISPR/Cas9 toolbox. The conifer-specific CRISPR/Cas9 system developed in this research could be valuable in gene function research and trait improvement.


2021 ◽  
Author(s):  
Ignacio Hermoso de Mendoza ◽  
Etienne Boucher ◽  
Fabio Gennaretti ◽  
Aliénor Lavergne ◽  
Laia Andreu-Hayles ◽  
...  

Abstract. The representation of snow processes in forest growth models is necessary to accurately predict the hydrological cycle in boreal ecosystems and the isotopic signature of soil water extracted by trees, photosynthates and tree-ring cellulose. Yet, most process-based models do not include a snow module, consequently their simulations may be biased in cold environments. Here, we modified the MAIDENiso model to incorporate a new snow module that simulates snow accumulation, melting and sublimation, as well as thermal exchanges driving freezing and thawing of the snow and the soil. We tested these implementations in two sites in East and West Canada for black spruce (Picea mariana) and white spruce (Picea glauca) forests, respectively. The new snow module improves the skills of the model to predict components of the hydrological cycle. The model is now able to reproduce the spring discharge peak and to simulate stable oxygen isotopes in tree-ring cellulose more realistically than in the original, snow-free version of the model. The new implementation also results in simulations with a higher contribution from the source water on the oxygen isotopic composition of the simulated cellulose, leading to more accurate estimates. Future work may include the development of inverse modelling with the new version of MAIDENiso to produce robust reconstructions of the hydrological cycle and isotope processes in cold environments.


2021 ◽  
pp. 1-23
Author(s):  
Shuo Wang ◽  
Henry An ◽  
Wei-Yew Chang ◽  
Chris Gaston ◽  
Barb R. Thomas

The adoption of genomic technology and the use of improved seeds are expected to improve timber productivity in Alberta. However, this improvement will need to take place within the confines of the public-private nature of the sector where 93% of the total forest area is publicly owned. The purpose of this study is to explore the extent to which a timber harvest policy known as the allowable cut effect can affect the welfare outcomes of adopting genomics-assisted tree breeding. Using the forest industry of Alberta as the empirical setting, the economic returns to the adoption of this new breeding technology in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) and white spruce (Picea glauca (Moench) Voss) are calculated by estimating a timber supply model and a spatial equilibrium model. Under certain policy and technology improvement scenarios, the economic returns are negative, which would result in non-adoption of the technology. However, under other feasible conditions, the payoffs of genomics-assisted tree breeding research are large and positive. These results illustrate the important role that government policies can have on the returns to adopting new technologies.


2021 ◽  
Vol 21 (3) ◽  
pp. 57-70
Author(s):  
E.A. Svyatkovskaya ◽  
◽  
N.V. Saltan ◽  
E.P. Rybalka ◽  
N.N. Trostenyuk ◽  
...  

The first experience of transplanting large-sized coniferous dendrointroducents (Picea glauca (Moench) Voss, Larix sibirica Ledeb.) in the spring-summer period without preliminary prepara-tion of the root system in the urban conditions of the Polar region was presented. Four specimens of middle-aged plants of both species were selected. The transplant was carried out with the max-imum use of mechanized equipment, which ensures good preservation of the lump and the tree it-self. There were four mutually related stages of work (preparatory, digging out plants, transporta-tion, planting), the quality of which depends on the success of plant survival. A brief description of the decorative qualities, morphometric parameters and the state of the experimental plants has been given. It has shown that due to the peculiarities of the soil and the location of the root system in coniferous introduced species, a clod of earth should be at least 60 cm thick, with a diameter of 110 to 130 cm. The main agrotechnical methods for the creation and care of plantings from large-sized plants were given.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Cui ◽  
Ying Gao ◽  
Ruirui Zhao ◽  
Jian Zhao ◽  
Yixuan Li ◽  
...  

Cryopreservation is one of the key technologies for the mass propagation of conifers via somatic embryogenesis. Cryotolerance and embryogenecity of conifer somatic embryos (SEs) could be affected by different temperature treatments, for which the underlying mechanisms were unknown. In this study, the developing SEs of Picea glauca obtained their cryotolerance with a survival rate of 100% when cultured on maturation medium at either 23°C for 4 weeks or 4°C for 10 weeks. However, only the embryos that underwent 4°C acclimation remained high embryogenicity, i.e., 91.7% based on cryovials or 29.3% on the plant tissue. Analysis of differentially expressed genes (DEGs) revealed that both 23 and 4°C treatments led to drastic changes in the gene expression, i.e., 21,621 and 14,906 genes, respectively, and the general increase in many oligosaccharides and flavonoids, in addition to the content change of proline (1.9- and 2.3-fold at 23 or 4°C) and gallic acid (6,963- and 22,053-fold). There were 249 significantly different metabolites between the samples of 23 and 4°C treatments and the changing trend of the sorbitol, fatty acids, and monosaccharides differed between these samples. During 4°C-acclimation, the metabolites of the arginine biosynthesis pathway increased between 2.4- and 8.1-fold, and the expression of antioxidant genes was up-regulated significantly. At 4°C, the up-regulated genes were for germ-like proteins, instead of seed storage proteins at 23°C. Concentrations of abscisic acid and jasmonic acid increased up to 2- and 1.5-fold, respectively, in the cold-acclimated embryos. After 10 weeks at 4°C, the embryos stayed at pre-cotyledonary stage with 17.1% less DNA methylation and fewer storage substances than those at 23°C for 4 weeks, which developed cotyledons. This research provides new insights into mechanisms underlying the response of SEs to different culture temperatures and benefits method development for germplasm conservation in conifers.


Sign in / Sign up

Export Citation Format

Share Document