scholarly journals Radiative rates for E1, E2, M1, and M2 transitions among the 3s23p5, 3s3p6, and 3s23p43d configurations of Cl-like W LVIII

2014 ◽  
Vol 92 (10) ◽  
pp. 1166-1177 ◽  
Author(s):  
Kanti M. Aggarwal ◽  
Francis P. Keenan

We report calculations of energy levels, radiative decay rates, and lifetimes for transitions among the 3s23p5, 3s3p6, and 3s23p43d configurations of Cl-like W LVIII. The general-purpose relativistic atomic structure package (GRASP) has been adopted for our calculations. Comparisons are made with the most recent results of Mohan et al. (Can. J. Phys. 92, 177 (2014). doi:10.1139/cjp-2013-0348) and discrepancies in lifetimes are noted, up to four orders of magnitude in some instances. Our energy levels are estimated to be accurate to better than 0.5%, whereas results for radiative rates and lifetimes should be accurate to better than 20%.

2014 ◽  
Vol 92 (6) ◽  
pp. 545-550 ◽  
Author(s):  
Kanti M. Aggarwal ◽  
Francis P. Keenan

We report calculations of energy levels and oscillator strengths for transitions in W XL, undertaken with the general-purpose relativistic atomic structure package (GRASP) and flexible atomic code (FAC). Comparisons are made with existing results and the accuracy of the data is assessed. Discrepancies with the most recent results of S. Aggarwal et al. (Can. J. Phys. 91, 394 (2013)) are up to 0.4 Ryd and up to two orders of magnitude for energy levels and oscillator strengths, respectively. Discrepancies for lifetimes are even larger, up to four orders of magnitude for some levels. Our energy levels are estimated to be accurate to better than 0.5% (i.e., 0.2 Ryd), whereas results for oscillator strengths and lifetimes should be accurate to better than 20%.


2013 ◽  
Vol 91 (7) ◽  
pp. 554-559 ◽  
Author(s):  
Liang Liang ◽  
Wen-jing Gao ◽  
Chao Zhou

Energy levels, line strengths, oscillator strengths, radiative decay rates and fine structure collision strengths are presented for six-times ionized krypton (Kr VII). The atomic data are calculated with the AUTOSTRUCTURE code, where relativistic corrections are introduced according to the Breit–Pauli distorted wave approach. We present calculations of atomic data for 40 fine-structure levels generated from nine configurations ((1s22s22p63s23p63d10)4s2, 4lnl′, n = 4, 5; l = 0, 1; and l′ ≤ 3) of the Zn-like Kr ion. Fine structure collision strengths for transitions from the ground and the first four excited levels are presented at six electron energies: 8, 15, 30, 45, 60, and 80 Ryd. Our atomic structure data are compared with the available experimental and theoretical results.


Atoms ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 52
Author(s):  
Wan-Ü Tchang-Brillet ◽  
Jean-François Wyart ◽  
Ali Meftah ◽  
Sofiane Ait Mammar

Semi-empirical transition probabilities for magnetic dipole (M1) and electric quadrupole (E2) emission lines have been derived from parametric studies of experimental energy levels in Tm3+ (Tm IV), Yb4+ (Yb V), and Er3+ (Er IV), using Cowan codes. Results are compared with those existing from ab initio calculations or from more sophisticated semi-empirical calculations. Satisfactory agreements show that simple parametric calculations can provide good predictions on line intensities, provided that experimental levels are available, allowing reliable fits of energy parameters.


2009 ◽  
Vol 87 (8) ◽  
pp. 895-907 ◽  
Author(s):  
G. P. Gupta ◽  
A. Z. Msezane

We have performed large-scale CIV3 calculations of excitation energies from the ground state for 97 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s22s22p6)3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, 3s3d2, 3s24s, 3s24p, 3s24d, 3s24f, and 3s3p4s configurations of Cu XVII. These states are represented by very extensive configuration-interaction (CI) wave functions obtained with the CIV3 (Configuration-Interaction Version 3) computer code of Hibbert. The important relativistic effects in intermediate coupling are incorporated by means of the Breit–Pauli Hamiltonian, which consists of the nonrelativistic term plus the one-body mass correction, Darwin term, and spin–orbit, spin–other-orbit, and spin–spin operators. To keep our calculated energy splittings as close as possible to the experimental values (wherever available), we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated excitation energies, including their ordering, are in excellent agreement with the available experimental results. From our radiative decay rates we have also calculated radiative lifetimes of some fine-structure levels. The mixing among several fine-structure levels is found to be so strong that the correct identification of these levels becomes very difficult. We believe that our extensive calculations will be useful to experimentalists in identifying the fine-structure levels in their future work. In this calculation we also predict new data for several fine-structure levels where no other theoretical and (or) experimental results are available.


2017 ◽  
Vol 95 (10) ◽  
pp. 950-957
Author(s):  
Arun Goyal ◽  
Rinku Sharma ◽  
A.K. Singh ◽  
Man Mohan

We report accurate calculations of W XLIV through application of multi-configuration Dirac–Fock wave functions. We have calculated the energies for the lowest 100 fine structure levels, transition wavelengths, radiative rates, oscillator strengths, and line strengths for electric (E1) and magnetic dipole (M1) transitions with the extended average level multi-configurational Dirac–Fock method in the General-Purpose Relativistic Atomic Structure Package (GRASP). We have taken into account the electron correlations, quantum electrodynamics (QED) and Breit corrections in our calculations. We have also performed parallel calculations with the flexible atomic code (FAC) to assess the accuracy of our calculations. This is a fully relativistic code that provides a variety of atomic parameters, and (generally) yields results for energy levels and radiative rates comparable to GRASP. Our calculated results match well with experimentally observed results that are obtained in ASDEX upgrade Tokamak. Additionally, we have also provided the line intensity ratios and electron density for W XLIV, which is useful and important in plasma diagnostics and modeling in future International Thermonuclear Experimental Reactor (ITER) experiments. We believe that our results would be beneficial in the areas of fusion plasma research and astrophysical investigations and applications.


Optik ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4105-4110 ◽  
Author(s):  
Chao Zhou ◽  
Jian-jian Cao ◽  
Liang Liang ◽  
Geng-hua Yu ◽  
Zhan-min Wang ◽  
...  

1979 ◽  
Vol 63 (1) ◽  
pp. 90-92 ◽  
Author(s):  
H. Jagannath ◽  
A. Sivaram ◽  
D. Ramachandra Rao ◽  
P. Venkateswarlu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document