Channel type and salmonid spawning distribution and abundance

1999 ◽  
Vol 56 (3) ◽  
pp. 377-387 ◽  
Author(s):  
David R Montgomery ◽  
Eric M Beamer ◽  
George R Pess ◽  
Thomas P Quinn

Consideration of fundamental channel processes, together with map-based and field investigations, indicates that stream channel type influences salmonid spawning distributions across entire channel networks and salmonid abundance within channel reaches. Our analysis suggests that salmonid spawning patterns in mountain drainage basins of the Pacific Northwest are adapted to, among other things, the timing and depth of channel bed mobility. We hypothesize that because the bed of pool-riffle and plane-bed reaches scours to a variable fraction of the thickness of alluvium, survival to emergence is favored by either burying eggs below the annual scour depth or avoiding egg burial during times of likely bed mobility. Conversely, annual mobility of all available spawning gravel in steeper step-pool and cascade channels favors either adaptations that avoid egg burial during times of likely bed mobility or selection of protected microhabitats. Consistent with these expectations, we find that salmonid spawning distributions track channel slope distributions in several west-slope Pacific Northwest watersheds, implying that spatial differences in channel processes influence community structure in these rainfall-dominated drainage basins. More detailed field surveys confirm that different channel types host differential use by spawning salmonids and reveal finer-scale influences of pool spacing on salmonid abundance.

1990 ◽  
Vol 27 (4) ◽  
pp. 409-417 ◽  
Author(s):  
Lee E. Benda ◽  
Terrance W. Cundy

An empirical model for predicting deposition of coarse-textured debris flows in confined mountain channels is developed based on field measurements of 14 debris flows in the Pacific Northwest, U.S.A. The model uses two criteria for deposition: channel slope (less than 3.5°) and tributary junction angle (greater than 70°). The model is tested by predicting travel distances of 15 debris flows in the Oregon Coast Range and six debris flows in the Washington Cascades, U.S.A. The model is further tested on 44 debris flows in two lithological types in the Oregon Coast Range using aerial photos and topographic maps; on these flows only the approximate travel distance is known. The model can be used by resource professionals to identify the potential for impacts from debris flows. Key words: debris flow, deposition, travel, erosion.


2002 ◽  
Vol 39 (2) ◽  
pp. 189-205 ◽  
Author(s):  
Yvonne Martin ◽  
Kenneth Rood ◽  
James W Schwab ◽  
Michael Church

Despite the importance of landsliding in routing sediment through mountainous drainage basins, few studies have documented landsliding rates over extended time and space scales. We have investigated landsliding in surficial material in the Queen Charlotte Islands using a large inventory of events, derived from aerial photography, covering an area of 166.7 km2. The mean erosion rate for shallow landsliding is 0.10 mm·a–1, which is at the upper end of shallow landsliding rates observed in the Pacific Northwest and coastal British Columbia, but several orders of magnitude lower than rock-based landsliding rates reported in the literature. Probability distributions for landslide area and volume are somewhat convex in form. Flattening of the curve found at low magnitudes may be due to sampling bias or physical mechanisms inhibiting failure, and the steepening for high values may exist because the sampling period is not long enough to adequately represent large events. Landslides generally initiate on hillslope gradients greater than 0.50–0.60. The largest numbers of landslides occur on south- to southwest-facing slopes and east- to northeast-facing slopes. Most events occur on concave and straight hillslopes in upper-slope positions. Landsliding rates were found not to be affected by rock type. Hillslopes in the Queen Charlotte Islands are often mantled by weathered Quaternary deposits and, hence, landsliding events are not directly controlled by weathering of bedrock. About 31% of landslides identified in this study deposited material in stream reaches, with about 83% of these landslides deposited in reaches with gradients between 3% and 10%.


2019 ◽  
Vol 39 (4) ◽  
pp. 452
Author(s):  
Margaret H. Massie ◽  
Todd M. Wilson ◽  
Anita T. Morzillo ◽  
Emilie B. Henderson

2020 ◽  
Author(s):  
Jacob L. Strunk ◽  
Constance A. Harrington ◽  
Leslie C. Brodie ◽  
Janet S. Prevéy

Sign in / Sign up

Export Citation Format

Share Document