Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare)

Genome ◽  
2000 ◽  
Vol 43 (6) ◽  
pp. 1045-1054 ◽  
Author(s):  
M Molnár-Láng ◽  
G Linc ◽  
A Logojan ◽  
J Sutka

New winter wheat (Triticum aestivum L.) × winter barley (Hordeum vulgare L.) hybrids produced using cultivated varieties (wheat 'Martonvásári 9 kr1'(Mv9 kr1) × barley 'Igri', Mv9 kr1 × 'Osnova', 'Asakazekomugi' × 'Manas') were multiplied in tissue culture because of the high degree of sterility and then pollinated with wheat to obtain backcross progenies. Meiotic analysis of the hybrids Mv9 kr1 × 'Igri' and 'Asakazekomugi' × 'Manas' and their in vitro regenerated progenies with the Feulgen method revealed 1.59 chromosome arm associations per cell in both initial hybrids. The number of chromosome arm associations increased after in vitro culture to 4.72 and 2.67, respectively, in the two combinations. According to the genomic in situ hybridization (GISH) analysis, wheat-barley chromosome arm associations made up 3.6% of the total in the initial Mv9 kr1 × 'Igri' hybrid and 6.6% and 16.5% of the total in in vitro regenerated progenies of the 'Asakazekomugi' × 'Manas' and Mv9 kr1 × 'Igri' hybrids, respectively. The demonstration by GISH of wheat-barley chromosome pairing in the hybrids and especially in their in vitro regenerated progenies proves the possibility of producing recombinants between these two genera, and thus of transferring useful characters from barley into wheat. In vitro conditions caused an increase in chromosome arm association frequency in both combinations and in fertility in some regenerants.Key words: wheat, barley, intergeneric hybridization, meiotic chromosome pairing, GISH.

2020 ◽  
Vol 56 (No. 4) ◽  
pp. 150-158
Author(s):  
Osama Zuhair Kanbar ◽  
Csaba Lantos ◽  
Paul Karumba Chege ◽  
Erzsébet Kiss ◽  
János Pauk

We investigated the anther culture (AC) efficiency of thirteen F<sub>4</sub> combinations of winter wheat (Triticum aestivum L.). The genotype dependency was assessed during the induction of the androgenic entities, i.e. embryo-like structures (ELS), regenerated-, green-, albino-, and transplanted plantlets. The number of green plantlets per 100 anthers (GP/100A) varied from 0.36 to 24.74 GP/100A with a mean of 8.31 GP/100A. Albino plantlets (AP) occurred in each combination, ranging from 0.20 to 22.80 AP/100A with an average value of 5.59 AP/100A. Between 25–87.76 doubled haploid (DH) plants per 100 acclimatised plantlets (DH/100ADP), depending on the combination, with a mean of 59.74% were recovered. We have found the highest DH production in the combinations Béres/Midas, Kalász/Tacitus, Béres/Pamier, and Premio/5009. This improves remarkably the choice of basic genetic material in subsequent crossing programmes. These observations emphasise the usability and efficiency of in vitro AC in producing a large number of DH lines for breeding and the applied researches of winter wheat. Although albinism was found in each combination, it was mitigated by the in vitro AC application.


1971 ◽  
Vol 18 (3) ◽  
pp. 311-328 ◽  
Author(s):  
A. M. Wall ◽  
Ralph Riley ◽  
Victor Chapman

SUMMARYPlants of Triticum aestivum (2n = 6x = 42) ditelocentric 5BL were treated with EMS in order to produce mutations in the 5B system by which meiotic pairing between homoeologous chromosomes is normally prevented. To check for the occurrence of mutation T. aestivum ditelo-5BL plants were pollinated with rye (Secale cereale 2n = 14) and meiosis was examined in the resulting hybrids.Wheat-rye hybrids were scored for the presence of mutants when the wheat parents were either the EMS-treated wheat plants, or their selfed derivatives, or their progenies obtained after pollination with untreated euploid individuals.Mutants were detected by each of these procedures and mutant gametes were produced by the treated ditelocentric plants with frequencies between 1·5 and 2·5%, but there were differences between the mutants in the extent to which homoeologous pairing occurred in the derived wheat-rye hybrids. The differences may have resulted from the occurrence of mutation at different loci or to different extents at the same locus.Two mutants, Mutant 10/13 and Mutant 61, were fixed in the homozygous condition. Mutant 10/13 was made homozygous both in the 5BL ditelocentric and in the euploid conditions but these genotypes regularly formed 21 bivalents at meiosis, and there was no indication of homoeologous pairing although the mutant 10/13 gave rise to homoeologous pairing in wheat-rye hybrids.


1971 ◽  
Vol 18 (3) ◽  
pp. 329-339 ◽  
Author(s):  
A. M. Wall ◽  
Ralph Riley ◽  
M. D. Gale

SUMMARYAn investigation was made of the chromosomal position of the mutant locus, in Mutant 10/13 of Triticum aestivum (2n = 6x = 42), affecting homoeologous chromosome pairing at meiosis. In hybrids between Mutant 10/13 and rye (Secale cereale 2n = 14), homoeologous chromosomes frequently pair at meiosis although normally, in wheat-rye hybrids, this happens infrequently.The association of the mutant condition with chromosome 5B was determined by (i) the absence of segregation in hybrids obtained when Mutant 10/13 monosomic 5B was pollinated by rye; (ii) the occurrence of trisomie segregation for pairing behaviour in 28-chromosome wheat-rye hybrids, obtained from SB trisomie wheat parents with two 5B chromosome from a non-mutant and one from a mutant parent; (iii) the absence of segregation for pairing behaviour in the 29-chromosome wheat-rye hybrids obtained from the same trisomie wheat parents.The alternative pairing behaviours segregated independently of the centromere when wheat plants that were simultaneously heteromorphic, 5BL telocentric/5B complete, and heterozygous for the Mutant 10/13 state, were pollinated by rye. The alternative chromosome-pairing patterns segregated to give a ratio not different from 1:1, so that the association of homoeologous pairing with Mutant 10/13 probably derived from the occurrence of mutation at a single locus on 5BL. In the disomic heteromorphic state, 5BL was 91 map units in length.Trisomie wheats with two complete 5B chromosomes and one 5BL telocentric, that were also heterozygous for the Mutant 10/13 condition, were pollinated by rye. Among the resulting 28-chromosome hybrids there was a 2:1 segregation of hybrids with low pairing: high (homoeologous) pairing and also of hybrids with complete 5B: telocentric 5BL. However, there was no evidence of linkage in this trisomie segregation. All the 29-chromosome hybrids from this cross had low pairing and it could be concluded that the single mutant allele, in Mutant 10/13, was recessive. In the trisomie condition, relative to a simplex situation, 5BL was 33·05 map units in length.The critical locus on 5BL was designated Pairing homoeologous. The normal dominant allele was symbolized Ph and the recessive allele, in Mutant 10/13, ph.The prevention of homoeologous pairing by the activity of a single locus makes the evolution of the regular meiotic behaviour of T. aestivum more readily comprehensible.


1993 ◽  
Vol 2 (4) ◽  
pp. 311-327 ◽  
Author(s):  
Leena Hömmö ◽  
Seppo Pulli

The winterhardiness of 24 winter wheat, 13 rye, 5 triticale and 11 winter barley varieties of different origins was tested at six locations in Finland in 1989-1992. The survival ability of the cultivars, their resistance to snow mould (Microdochium nivale) and the correlations between these traits and the growth habit and growth stage were determined. The trials were grouped on the basis of variety ranking, and the differences between the varieties within each group were studied by the analysis of variance. Statistically highly significant differences between varieties were found in all cases. The wintering conditions during the trials were very variable, and this brought about differences in the ranking of cultivars in different trials. In most cases the genotypic-environmental interactions could be explained by the different genetic systems controlling the tolerance to various winter stresses and changes in their intensity.


Genome ◽  
1992 ◽  
Vol 35 (1) ◽  
pp. 98-102 ◽  
Author(s):  
Qin Chen ◽  
Joseph Jahier ◽  
Yvonne Cauderon

Triticum aestivum cv. Chinese Spring (2n = 6x = 42, ABD genomes) was crossed with diploid Inner Mongolian Agropyron Gaertn. species A. cristatum and A. mongolicum and reciprocal hybrids between them (2n = 2x = 14, P genome, with or without B chromosomes). Intergeneric hybrids with 2n = 27, 28, 32, and 33 chromosomes were produced by the aid of embryo rescue. The extra chromosomes in two hybrids were assumed to be B chromosomes transmitted by the male Agropyron parent. Average meiotic pairing in the euploid hybrid with 28 chromosomes was 14.38 univalents + 4.92 bivalents + 1.26 trivalents. This level of pairing higher than expected was likely due to homeologous associations between wheat chromosomes. This data indicates that the P genome of diploid as well as tetraploid Agropyron originating from Inner Mongolia possess a genetic system interfering with 5B homoeologous restricting system of wheat.Key words: intergeneric hybrids, Triticum aestivum, diploid Agropyron species, chromosome pairing.


Sign in / Sign up

Export Citation Format

Share Document