chromosome arm
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 78)

H-INDEX

57
(FIVE YEARS 5)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009996
Author(s):  
Alexey D. Vyatkin ◽  
Danila V. Otnyukov ◽  
Sergey V. Leonov ◽  
Aleksey V. Belikov

There is a growing need to develop novel therapeutics for targeted treatment of cancer. The prerequisite to success is the knowledge about which types of molecular alterations are predominantly driving tumorigenesis. To shed light onto this subject, we have utilized the largest database of human cancer mutations–TCGA PanCanAtlas, multiple established algorithms for cancer driver prediction (2020plus, CHASMplus, CompositeDriver, dNdScv, DriverNet, HotMAPS, OncodriveCLUSTL, OncodriveFML) and developed four novel computational pipelines: SNADRIF (Single Nucleotide Alteration DRIver Finder), GECNAV (Gene Expression-based Copy Number Alteration Validator), ANDRIF (ANeuploidy DRIver Finder) and PALDRIC (PAtient-Level DRIver Classifier). A unified workflow integrating all these pipelines, algorithms and datasets at cohort and patient levels was created. We have found that there are on average 12 driver events per tumour, of which 0.6 are single nucleotide alterations (SNAs) in oncogenes, 1.5 are amplifications of oncogenes, 1.2 are SNAs in tumour suppressors, 2.1 are deletions of tumour suppressors, 1.5 are driver chromosome losses, 1 is a driver chromosome gain, 2 are driver chromosome arm losses, and 1.5 are driver chromosome arm gains. The average number of driver events per tumour increases with age (from 7 to 15) and cancer stage (from 10 to 15) and varies strongly between cancer types (from 1 to 24). Patients with 1 and 7 driver events per tumour are the most frequent, and there are very few patients with more than 40 events. In tumours having only one driver event, this event is most often an SNA in an oncogene. However, with increasing number of driver events per tumour, the contribution of SNAs decreases, whereas the contribution of copy-number alterations and aneuploidy events increases.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Nikolaj Meisner Vendelbo ◽  
Khalid Mahmood ◽  
Pernille Sarup ◽  
Mogens S. Hovmøller ◽  
Annemarie Fejer Justesen ◽  
...  

Leaf rust constitutes one of the most important foliar diseases in rye (Secale cereale L.). To discover new sources of resistance, we phenotyped 180 lines belonging to a less well-characterized Gülzow germplasm at three field trial locations in Denmark and Northern Germany in 2018 and 2019. We observed lines with high leaf rust resistance efficacy at all locations in both years. A genome-wide association study using 261,406 informative single-nucleotide polymorphisms revealed two genomic regions associated with resistance on chromosome arms 1RS and 7RS, respectively. The most resistance-associated marker on chromosome arm 1RS physically co-localized with molecular markers delimiting Pr3. In the reference genomes Lo7 and Weining, the genomic region associated with resistance on chromosome arm 7RS contained a large number of nucleotide-binding leucine-rich repeat (NLR) genes. Residing in close proximity to the most resistance-associated marker, we identified a cluster of NLRs exhibiting close protein sequence similarity with the wheat leaf rust Lr1 gene situated on chromosome arm 5DL in wheat, which is syntenic to chromosome arm 7RS in rye. Due to the close proximity to the most resistance-associated marker, our findings suggest that the considered leaf rust R gene, provisionally denoted Pr6, could be a Lr1 ortholog in rye.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengtao Ma ◽  
Liru Wu ◽  
Yufei Xu ◽  
Hongxing Xu ◽  
Xu Zhang ◽  
...  

Wheat powdery mildew, caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a destructive disease leading to huge yield losses in production. Host resistance can greatly contribute to the control of the disease. To explore potential genes related to the powdery mildew (Pm) resistance, in this study, we used a resistant genotype YD588 to investigate the potential resistance components and profiled its expression in response to powdery mildew infection. Genetic analysis showed that a single dominant gene, tentatively designated PmYD588, conferred resistance to powdery mildew in YD588. Using bulked segregant RNA-Seq (BSR-Seq) and single nucleotide polymorphism (SNP) association analysis, two high-confidence candidate regions were detected in the chromosome arm 2B, spanning 453,752,054-506,356,791 and 584,117,809-664,221,850 bp, respectively. To confirm the candidate region, molecular markers were developed using the BSR-Seq data and mapped PmYD588 to an interval of 4.2 cM by using the markers YTU588-004 and YTU588-008. The physical position was subsequently locked into the interval of 647.1–656.0 Mb, which was different from those of Pm6, Pm33, Pm51, Pm52, Pm63, Pm64, PmQ, PmKN0816, MlZec1, and MlAB10 on the same chromosome arm in its position, suggesting that it is most likely a new Pm gene. To explore the potential regulatory genes of the R gene, 2,973 differentially expressed genes (DEGs) between the parents and bulks were analyzed using gene ontology (GO), clusters of orthologous group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Based on the data, we selected 23 potential regulated genes in the enriched pathway of plant-pathogen interaction and detected their temporal expression patterns using an additional set of wheat samples and time-course analysis postinoculation with Bgt. As a result, six disease-related genes showed distinctive expression profiles after Bgt invasion and can serve as key candidates for the dissection of resistance mechanisms and improvement of durable resistance to wheat powdery mildew.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hyelim Jo ◽  
Taemook Kim ◽  
Yujin Chun ◽  
Inkyung Jung ◽  
Daeyoup Lee

AbstractWe herein employ in situ Hi-C with an auxin-inducible degron (AID) system to examine the effect of chromatin remodeling on 3D genome organization in yeast. Eight selected ATP-dependent chromatin remodelers representing various subfamilies contribute to 3D genome organization differently. Among the studied remodelers, the temporary depletions of Chd1p, Swr1p, and Sth1p (a catalytic subunit of the Remodeling the Structure of Chromatin [RSC] complex) cause the most significant defects in intra-chromosomal contacts, and the regulatory roles of these three remodelers in 3D genome organization differ depending on the chromosomal context and cell cycle stage. Furthermore, even though Chd1p and Isw1p are known to share functional similarities/redundancies, their depletions lead to distinct effects on 3D structures. The RSC and cohesin complexes also differentially modulate 3D genome organization within chromosome arm regions, whereas RSC appears to support the function of cohesin in centromeric clustering at G2 phase. Our work suggests that the ATP-dependent chromatin remodelers control the 3D genome organization of yeast through their chromatin-remodeling activities.


Euphytica ◽  
2021 ◽  
Vol 217 (11) ◽  
Author(s):  
Admas Alemu ◽  
Sufian Suliman ◽  
Adel Hagras ◽  
Sherif Thabet ◽  
Ayed Al-Abdallat ◽  
...  

AbstractIdentification and exploration of the genetic architecture of traits related to yield, quality, and drought and heat tolerance is important for yield and quality improvement of wheat through marker-assisted selection. One hundred and ninety-two spring wheat genotypes were tested at two heat-stress locations in Sudan (Wad Medani and Dongula), a drought stress site in Morocco (Marchouch) and a site with high yield potential in Egypt (Sids) in replicated trials during the 2015–2016 and 2016–2017 cropping seasons. A total of 10,577 single nucleotide polymorphism markers identified from the 15 K wheat SNP assay were used in a genome-wide association (GWA) study and genomic prediction for 16 phenotypic traits related to yield, quality and drought and heat tolerance. Significant marker-trait associations were detected across GWAS models for all traits. Most detected marker-trait associations (MTAs) were environment-specific, signifying the presence of high quantitative trait loci-by-environment (QTL x E) interaction. Chromosome arm 5AL had significant multi-model MTAs for grain yield and yield-related traits at the heat-stress locations. Highly significant QTLs were detected on chromosome 2D for waxiness. Homoeologous group 2 and 6 chromosomes were with significant MTAs for grain protein content, gluten content, alveograph strength and Zeleny sedimentation test while chromosome arm 3BL was significant for both Z and W traits. Genomic prediction analysis with ridge regression-best linear unbiased prediction model estimated the breeding values of the studied traits with prediction accuracies ranging from 0.16 for leaf rolling to 0.72 for peduncle length. The identified QTLs could be targeted for marker-assisted selection or further studies aimed at fine mapping and cloning the causative genes and detecting favorable haplotypes with positive effects for agronomic, physiological or quality-related traits.


2021 ◽  
Author(s):  
Andrew Katz ◽  
Patrick Byrne ◽  
Scott Reid ◽  
Sarah Bratschun ◽  
Scott Haley ◽  
...  

Abstract To provide food security for a growing world population, it will be necessary to increase yields of staple crops such as wheat (Triticum aestivum L.). Yield is a complex, polygenic trait influenced by grain weight and number, which are negatively correlated with one another. Spikelet number is an important determinant of grain number, but allelic variants impacting its expression are often associated with heading date, constraining their use in wheat germplasm that must be adapted for specific environments. Identification and characterization of genetic variants affecting spikelet number will increase selection efficiency through their deployment in breeding programs.In this study, a quantitative trait locus (QTL) on chromosome arm 6BL for spikelet number was identified and validated using an association mapping panel, a recombinant inbred line population, and seven derived heterogeneous inbred families. The superior allele, QSn.csu-6Bb, was associated with an increase of 0.248 to 0.808 spikelets per spike across multiple environments that varied for mean spikelet number. Despite epistatic interactions between QSn.csu-6B and three other loci (WAPO-A1, VRN-D3 and PPD-B1), genotypes with a greater number of superior alleles at these loci consistently exhibit higher spikelet number. The frequency of superior alleles at these loci varies among winter wheat varieties adapted to different latitudes of the United States Great Plains, revealing opportunities for breeders to select for increased spikelet number using simple molecular markers. This work lays the foundation for the positional cloning of the genetic variant underlying the QSn.csu-6B QTL to strengthen our understanding of spikelet number determination in wheat.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jieguang Zhou ◽  
Cong Li ◽  
Jianing You ◽  
Huaping Tang ◽  
Yang Mu ◽  
...  

Abstract Background Improvement of wheat gercTriticum aestivum L.) yield could relieve global food shortages. Kernel size, as an important component of 1000-kernel weight (TKW), is always a significant consideration to improve yield for wheat breeders. Wheat related species possesses numerous elite genes that can be introduced into wheat breeding. It is thus vital to explore, identify, and introduce new genetic resources for kernel size from wheat wild relatives to increase wheat yield. Results In the present study, quantitative trait loci (QTL) for kernel length (KL) and width (KW) were detected in a recombinant inbred line (RIL) population derived from a cross between a wild emmer accession ‘LM001’ and a Sichuan endemic tetraploid wheat ‘Ailanmai’ using the Wheat 55 K single nucleotide polymorphism (SNP) array-based constructed linkage map and phenotype from six different environments. We identified eleven QTL for KL and KW including two major ones QKL.sicau-AM-3B and QKW.sicau-AM-4B, the positive alleles of which were from LM001 and Ailanmai, respectively. They explained 17.57 to 44.28% and 13.91 to 39.01% of the phenotypic variance, respectively. For these two major QTL, Kompetitive allele-specific PCR (KASP) markers were developed and used to successfully validate their effects in three F3 populations and two natural populations containing a panel of 272 Chinese wheat landraces and that of 300 Chinese wheat cultivars, respectively. QKL.sicau-AM-3B was located at 675.6–695.4 Mb on chromosome arm 3BL. QKW.sicau-AM-4B was located at 444.2–474.0 Mb on chromosome arm 4BL. Comparison with previous studies suggested that these two major QTL were likely new loci. Further analysis indicated that the positive alleles of QKL.sicau-AM-3B and QKW.sicau-AM-4B had a great additive effect increasing TKW by 6.01%. Correlation analysis between KL and other agronomic traits showed that KL was significantly correlated to spike length, length of uppermost internode, TKW, and flag leaf length. KW was also significantly correlated with TKW. Four genes, TRIDC3BG062390, TRIDC3BG062400, TRIDC4BG037810, and TRIDC4BG037830, associated with kernel development were predicted in physical intervals harboring these two major QTL on wild emmer and Chinese Spring reference genomes. Conclusions Two stable and major QTL for KL and KW across six environments were detected and verified in three biparental populations and two natural populations. Significant relationships between kernel size and yield-related traits were identified. KASP markers tightly linked the two major QTL could contribute greatly to subsequent fine mapping. These results suggested the application potential of wheat related species in wheat genetic improvement.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
GiWon Shin ◽  
Stephanie U. Greer ◽  
Erik Hopmans ◽  
Susan M. Grimes ◽  
HoJoon Lee ◽  
...  

AbstractWe developed a sensitive sequencing approach that simultaneously profiles microsatellite instability, chromosomal instability, and subclonal structure in cancer. We assessed diverse repeat motifs across 225 microsatellites on colorectal carcinomas. Our study identified elevated alterations at both selected tetranucleotide and conventional mononucleotide repeats. Many colorectal carcinomas had a mix of genomic instability states that are normally considered exclusive. An MSH3 mutation may have contributed to the mixed states. Increased copy number of chromosome arm 8q was most prevalent among tumors with microsatellite instability, including a case of translocation involving 8q. Subclonal analysis identified co-occurring driver mutations previously known to be exclusive.


Sign in / Sign up

Export Citation Format

Share Document