Genetic and cytogenetic analyses of the A genome of Triticum monococcum. VIII. Localization of rDNAs and characterization of 5S rRNA genes

Genome ◽  
1993 ◽  
Vol 36 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Nam-Soo Kim ◽  
J. Kuspira ◽  
K. Armstrong ◽  
R. Bhambhani

In situ hybridization with [3H]dCTP labelled pScT7 (5S rDNA) and pTa80 (18S + 26S rDNA) indicated that both hybridized to the terminal regions of two pairs of chromosomes in Triticum monococcum. When the hybridization was performed with a mixture of both probes, only two pairs of chromosome arms were labelled, which suggested that the loci of both genes were located in juxtaposition to one another. Both probes labelled one pair of sites more heavily than the other. Southern analysis of 5S with BamHI-digested DNA from 12 accessions of T. monococcum (including T. urartu) produced two superimposed ladders of approximate sizes of 500 and 330 bp, which differ from T. aestivum in which 500- and 420-bp ladders were found. The 500-bp ladder is derived from chromosome 5A (5SDna-A2) and the 330-bp ladder from chromosome 1A (5SDna-A1). The recognition site for SstI was present in the long spacer region but absent in the short spacer as in T. aestivum; however, unlike T. aestivum, there were HaeIII (GGCC) and HindIII (AAGCTT) recognition sites in the short spacer region. The TaqI recognition sites (TCGA) in the long and short spacer regions are probably more highly methylated in T. monococcum than in T. aestivum. The results have implications regarding the evolutionary changes that occurred in the A genome of the hexaploid compared with the diploid.Key words: Triticum monococcum, 5S rDNA, 18S + 26S rDNA, in situ hybridization, Southern hybridization, restriction fragments, methylation.

Genome ◽  
1996 ◽  
Vol 39 (3) ◽  
pp. 535-542 ◽  
Author(s):  
Concha Linares ◽  
Juan González ◽  
Esther Ferrer ◽  
Araceli Fominaya

A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S–5.8S–26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A–C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C–A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S–5.8S–26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.


Genome ◽  
1999 ◽  
Vol 42 (1) ◽  
pp. 52-59 ◽  
Author(s):  
S N Raina ◽  
Y Mukai

In order to obtain new information on the genome organization of Arachis ribosomal DNA, more particularly among A. hypogaea and its close relatives, the distribution of the 18S-5.8S-26S and 5S ribosomal RNA gene families on the chromosomes of 21 diploid and tetraploid Arachis species, selected from six of nine taxonomic sections, was analyzed by in situ hybridization with pTa71 (18S-5.8S-26S rDNA) and pTa794 (5S rDNA) clones. Two major 18S-5.8S-26S rDNA loci with intense signals were found in the nucleolus organizer regions (NOR) of each of the diploid and tetraploid species. In addition to extended signals at major NORs, two to six medium and (or) minute-sized signals were also observed. Variability in the number, size, and location of 18S-5.8S-26S sites could generally distinguish species within the same genome as well as between species with different genomes. The use of double fluorescence in situ hybridization enabled us to locate the positions of 5S rRNA genes in relation to the chromosomal location of 18S-5.8S-26S rRNA genes in Arachis chromosomes which were difficult to karyotype. Two or four 5S rDNA loci and 18S-5.8S-26S rDNA loci were generally located on different chromosomes. The tandemly repeated 5S rDNA sites were diagnostic for T and C genomes. In one species, each of B and Am genomes, the two ribosomal gene families were observed to occur at the same locus. Barring A. ipaensis and A. valida, all the diploid species had characteristic centromeric bands in all the 20 chromosomes. In tetraploid species A. hypogaea and A. monticola only 20 out of 40 chromosomes showed centromeric bands. Comparative studies of distribution of the two ribosomal gene families, and occurrence of centromeric bands in only 20 chromosomes of the tetraploid species suggests that A. villosa and A. ipaensis are the diploid progenitors of A. hypogaea and A. monticola. This study excludes A. batizocoi as the B genome donor species for A. hypogaea and A. monticola.Key words: Arachis species, 5S rRNA, 18S-5.8S-26S rRNA, in situ hybridization, evolution.


Genome ◽  
1997 ◽  
Vol 40 (2) ◽  
pp. 171-175 ◽  
Author(s):  
J. Schondelmaier ◽  
T. Schmidt ◽  
C. Jung ◽  
J. S. Heslop-Harrison

A digoxigenin-labelled 5S rDNA probe containing the 5S rRNA gene and the adjacent intergenic spacer was used for in situ hybridization to metaphase and interphase chromosomes of a trisomic stock from sugar beet (Beta vulgaris L.). Three chromosomes of primary trisomic line IV (T. Butterfass. Z. Bot. 52: 46–77. 1964) revealed signals close to the centromeres. Polymorphisms of 5S rDNA repeats in a segregating population were used to map genetically the 5S rRNA genes within a cluster of markers in linkage group II of sugar beet. The concentration of genetic markers around the centromere presumably reflects the suppressed recombination frequency in centromeric regions. The correlation of physical and genetic data allowed the assignment of a linkage group to sugar beet chromosome IV according to line IV of the primary trisomics.Key words: Beta vulgaris, sugar beet, 5S rRNA, in situ hybridization, RFLPs, trisomics.


Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 542-555 ◽  
Author(s):  
B. Friebe ◽  
N.-S. Kim ◽  
J. Kuspira ◽  
B. S. Gill

Cytogenetic studies in Triticum monococcum (2n = 2x = 14) are nonexistent. To initiate such investigations in this species, a series of primary trisomics was generated from autotriploids derived from crosses between induced autotetraploids and diploids. All trisomics differed phenotypically from their diploid progenitors. Only two of the seven possible primary trisomic types produced distinct morphological features on the basis of which they could be distinguished. The chromosomes in the karyotype were morphologically very similar and could not be unequivocally identified using standard techniques. Therefore, C-banding was used to identify the chromosomes and trisomics of this species. Ag–NOR staining and in situ hybridization, using rDNA probes, were used to substantiate these identifications. A comparison of the C-banding patterns of the chromosomes of T. monococcum with those of the A genome in Triticum aestivum permitted identification of five of its chromosomes, viz., 1A, 2A, 3A, 5A, and 7A. The two remaining chromosomes possessed C-banding patterns that were not equivalent to those of any of the chromosomes in the A genome of the polyploid wheats. When one of these undesignated chromosomes from T. monococcum var. boeoticum was substituted for chromosome 4A of Triticum turgidum, it compensated well phenotypically and therefore genetically for the loss of this chromosome in the recipient species. Because this T. monococcum chromosome appeared to be homoeologous to the group 4 chromosomes of polyploid wheats, it was designated 4A. By the process of elimination the second undesignated chromosome in T. monococcum must be 6A. Analysis of the trisomics obtained led to the following conclusions. (i) Trisomics for chromosome 3A were not found among the trisomic lines analyzed cytologically. (ii) Primary trisomics for chromosomes 2A, 4A, 6A, and 7A were positively identified. (iii) Trisomics for the SAT chromosomes 1A and 5A were positively identified in some cases and not in others because of polymorphism in the telomeric C-band of the short arm of chromosome 1A. (iv) Trisomics for chromosome 7A were identified on the basis of their distinct phenotype, viz., the small narrow heads and small narrow leaves. Because rRNA hybridizes lightly to nucleolus organizer regions on chromosome 1A and heavily to nucleolus organizer regions on chromosome 5A, our results indicate that trisomics in line 50 carry chromosome 1A in triple dose and trisomics in lines 28 and 51 carry chromosome 5A in triplicate. Variable hybridization of the rDNA probe to nucleolus organizer regions on chromosomes in triple dose in lines 7, 20, and 28 precluded the identification of the extra chromosome in these lines. Cytogenetic methods for unequivocally identifying trisomics for chromosomes 1A and 5A are discussed. Thus six of the series of primary trisomics have been identified. Telotrisomic lines are also being produced.Key words: Triticum monococcum, trisomics, C-banding, Ag-NOR staining, in situ hybridization, rDNA probes, plant morphology.


Genome ◽  
1995 ◽  
Vol 38 (3) ◽  
pp. 548-557 ◽  
Author(s):  
Araceli Fominaya ◽  
Gregorio Hueros ◽  
Yolanda Loarce ◽  
Esther Ferrer

Satellite DNA specific to the oat C genome was sequenced and located on chromosomes of diploid, tetraploid, and hexaploid Avena ssp. using in situ hybridization. The sequence was present on all seven C genome chromosome pairs and hybridized to the entire length of each chromosome, with the exception of the terminal segments of some chromosome pairs. Three chromosome pairs belonging to the A genome showed hybridization signals near the telomeres of their long arms. The existence of intergenomic chromosome rearrangements and the deletions of the repeated units are deduced from these observations. The number of rDNA loci (18S–5.8S–26S rDNA) was determined for the tetraploid and hexaploid oat species. Simultaneous in situ hybridization with the satellite and rDNA probes was used to assign the SAT chromosomes of these species to their correct genomes.Key words: oats, satellite DNA, rDNA, in situ hybridization, genome evolution.


Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 258-265 ◽  
Author(s):  
I. Galasso ◽  
D. Pignone ◽  
M. Frediani ◽  
M. Maggiani ◽  
R. Cremonini

The karyotypes of three accessions, one each from three annual species of the genus Cicer, namely Cicer arietinum, Cicer reticulation, and Cicer echinospermum, were examined and compared using C-banding, the fluorochromes chromomycin A3, DAPI, and Hoechst 33258, in situ hybridization of the 18S–5.8S–25S and 5S rDNA sequences, and silver staining. The nuclear DNA content of the three species and the amount of heterochromatin were also determined. The results suggest an evolutionary pathway in which C. reticulatum is the ancestral species from which both C. arietinum and C. echinospermum are derived with the loss of one pair of satellites; subsequently, C. echinospermum further differentiated by the accumulation of chromosomal rearrangement(s) that gave rise to a hybrid sterility barrier. Key words : Cicer, C-banding, fluorochromes, Ag staining, rRNA genes.


Genome ◽  
2003 ◽  
Vol 46 (3) ◽  
pp. 473-477 ◽  
Author(s):  
Francesco Fontana ◽  
Massimo Lanfredi ◽  
Leonardo Congiu ◽  
Marilena Leis ◽  
Milvia Chicca ◽  
...  

The number and distribution of the 18S–28S and 5S rRNA (rDNA) gene sequences were examined on mitotic chromosomes of six sturgeon species by two-colour in situ hybridization. Four of the six species, Huso huso, Acipenser stellatus, Acipenser sturio, and Acipenser ruthenus, with about 120 chromosomes, showed from six to eight 18S–28S rDNA signals, while 5S rDNA signals were on only one chromosome pair. The two species with 250–270 chromosomes, Acipenser baerii and Acipenser transmontanus, showed from 10 to 12 18S–28S sites and two chromosome pairs bearing 5S rDNA signals. In all examined species, the rather intense 5S rDNA signals apparently overlapped those of 18S–28S rDNA. These data support the diploid–tetraploid relationships between the two chromosome groups of sturgeons. The close association between the two rDNA families in species belonging to an ancestral fish order, such as Acipenseriformes, supports the hypothesis that the association represents a primitive condition.Key words: Acipenseriformes, FISH, fish cytogenetics, ribosomal genes.


Genome ◽  
1996 ◽  
Vol 39 (6) ◽  
pp. 1150-1158 ◽  
Author(s):  
Ekatherina D. Badaeva ◽  
Bernd Friebe ◽  
Bikram S. Gill

The distribution of the 5S and 18S–5.8S–26S (18S–26S) ribosomal RNA (rRNA) gene families on chromosomes of all diploid Aegilops species was studied by in situ hybridization with pTa71 (18S–26S rDNA) and pTa794 (5S rDNA) DNA clones. One major 18S–26S rDNA locus was found in the nucleolus organizer region (NOR) of each of the species Aegilops tauschii and Aegilops uniaristata and two loci were detected in the remaining species. In addition to major NORs, from one to nine minor loci were observed; their numbers and chromosomal locations were species-specific. Some minor loci were polymorphic, whereas others were conserved. One or two 5S rDNA loci were observed in the short arms of the chromosomes of groups 1 and 5 of all diploid Aegilops species except Ae. uniaristata, where one 5S rDNA site was located in the distal part of the long arm of chromosome 1N. The 5S rDNA loci were not associated with NORs; however, the relative positions of two ribosomal RNA gene families were diagnostic for chromosomes of homoeologous groups 1, 5, and 6. Implications of these results for establishing phylogenetic relationships of diploid Aegilops species and mechanisms of genome differentiation are discussed. Key words : wheat, Triticum, Aegilops, 5S rRNA, 18S–26S rRNA, in situ hybridization, evolution.


Genome ◽  
2017 ◽  
Vol 60 (8) ◽  
pp. 679-685 ◽  
Author(s):  
Ruijuan Liu ◽  
Richard R.-C. Wang ◽  
Feng Yu ◽  
Xingwang Lu ◽  
Quanwen Dou

Genomes of ten species of Elymus, either presumed or known as tetraploid StY, were characterized using fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH). These tetraploid species could be grouped into three categories. Type I included StY genome reported species—Roegneria pendulina, R. nutans, R. glaberrima, R. ciliaris, and Elymus nevskii, and StY genome presumed species—R. sinica, R. breviglumis, and R. dura, whose genome could be separated into two sets based on different GISH intensities. Type I genome constitution was deemed as putative StY. The St genome were mainly characterized with intense hybridization with pAs1, fewer AAG sites, and linked distribution of 5S rDNA and 18S-26S rDNA, while the Y genome with less intense hybridization with pAs1, more varied AAG sites, and isolated distribution of 5S rDNA and 18S-26S rDNA. Nevertheless, further genomic variations were detected among the different StY species. Type II included E. alashanicus, whose genome could be easily separated based on GISH pattern. FISH and GISH patterns suggested that E. alashanicus comprised a modified St genome and an unknown genome. Type III included E. longearistatus, whose genome could not be separated by GISH and was designated as StlYl. Notably, a close relationship between Sl and Yl genomes was observed.


Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 706-713 ◽  
Author(s):  
Concha Linares ◽  
Antonio Serna ◽  
Araceli Fominaya

A repetitive sequence, pAs17, was isolated from Avena strigosa (As genome) and characterized. The insert was 646 bp in length and showed 54% AT content. Databank searches revealed its high homology to the long terminal repeat (LTR) sequences of the specific family of Ty1-copia retrotransposons represented by WIS2-1A and Bare. It was also found to be 70% identical to the LTR domain of the WIS2-1A retroelement of wheat and 67% identical to the Bare-1 retroelement of barley. Southern hybridizations of pAs17 to diploid (A or C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) oat species revealed that it was absent in the C diploid species. Slot-blot analysis suggested that both diploid and tetraploid oat species contained 1.3 × 104 copies, indicating that they are a component of the A-genome chromosomes. The hexaploid species contained 2.4 × 104 copies, indicating that they are a component of both A- and D-genome chromosomes. This was confirmed by fluorescent in situ hybridization analyses using pAs17, two ribosomal sequences, and a C-genome specific sequence as probes. Further, the chromosomes involved in three C-A and three C-D intergenomic translocations in Avena murphyi (AC genomes) and Avena sativa cv. Extra Klock (ACD genomes), respectively, were identified. Based on its physical distribution and Southern hybridization patterns, a parental retrotransposon represented by pAs17 appears to have been active at least once during the evolution of the A genome in species of the Avena genus.Key words: chromosomal organization, in situ hybridization, intergenomic translocations, LTR sequence, oats.


Sign in / Sign up

Export Citation Format

Share Document