hybrid sterility
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 71)

H-INDEX

36
(FIVE YEARS 4)

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2583
Author(s):  
Takahiro Tezuka ◽  
Naoto Kitamura ◽  
Masanori Yanase ◽  
Toshinobu Morikawa

Wild tobacco species in the Nicotiana section Suaveolentes are promising genetic resources to introduce their disease resistance to cultivated tobacco, Nicotiana tabacum. However, hybrid lethality is observed in hybrid seedlings from crosses between most Suaveolentes species and N. tabacum. In particular, N. benthamiana belonging to the section Suaveolentes produces only viable hybrids after crossing with N. tabacum. In the present study, crossability between N. benthamiana and N. excelsior (section Suaveolentes) was investigated to test the possible usefulness of N. benthamiana as the bridge parent to transfer desirable genes of N. excelsior to N. tabacum via bridge crossing. After reciprocal crosses using three accessions of N. benthamiana and N. excelsior each, several crossing barriers such as cross-incompatibility, seed abortion, and male and female hybrid sterility were observed. Although reciprocal hybrids between N. benthamiana and N. excelsior showed a high degree of chromosome pairing in meiosis, univalents and multivalents, as well as chromosome bridges and lagging chromosomes, were observed. These meiotic abnormalities were thought to cause hybrid sterility. The possible usefulness of reciprocal hybrids between N. benthamiana and N. excelsior is discussed.


Author(s):  
Erica L Larson ◽  
Emily E K Kopania ◽  
Kelsie E Hunnicutt ◽  
Dan Vanderpool ◽  
Sara Keeble ◽  
...  

Abstract Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of Meiotic Sex Chromosome Inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes awaits further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.


2021 ◽  
Vol 118 (47) ◽  
pp. e2004901118
Author(s):  
Melanie J. Wilkinson ◽  
Federico Roda ◽  
Greg M. Walter ◽  
Maddie E. James ◽  
Rick Nipper ◽  
...  

Natural selection is responsible for much of the diversity we see in nature. Just as it drives the evolution of new traits, it can also lead to new species. However, it is unclear whether natural selection conferring adaptation to local environments can drive speciation through the evolution of hybrid sterility between populations. Here, we show that adaptive divergence in shoot gravitropism, the ability of a plant’s shoot to bend upwards in response to the downward pull of gravity, contributes to the evolution of hybrid sterility in an Australian wildflower, Senecio lautus. We find that shoot gravitropism has evolved multiple times in association with plant height between adjacent populations inhabiting contrasting environments, suggesting that these traits have evolved by natural selection. We directly tested this prediction using a hybrid population subjected to eight rounds of recombination and three rounds of selection in the field. Our experiments revealed that shoot gravitropism responds to natural selection in the expected direction of the locally adapted population. Using the advanced hybrid population, we discovered that individuals with extreme differences in gravitropism had more sterile crosses than individuals with similar gravitropic responses, which were largely fertile, indicating that this adaptive trait is genetically correlated with hybrid sterility. Our results suggest that natural selection can drive the evolution of locally adaptive traits that also create hybrid sterility, thus revealing an evolutionary connection between local adaptation and the origin of new species.


2021 ◽  
Author(s):  
Erica Larson ◽  
Emily Emiko Konishi Kopania ◽  
Kelsie E Hunnicutt ◽  
Dan Vanderpool ◽  
Sara Keeble ◽  
...  

Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of Meiotic Sex Chromosome Inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes awaits further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.


2021 ◽  
Vol 22 (22) ◽  
pp. 12117
Author(s):  
Dmitrij Dedukh ◽  
Anatolie Marta ◽  
Karel Janko

The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid’s gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.


2021 ◽  
Author(s):  
Karenleigh A. Overmann ◽  
Frederick L. Coolidge

The present paper examined the assumption of strong reproductive isolation (RI) between Homo neanderthalensis and Homo sapiens, as well as the question of what form it might have taken, using insights from the parallel case of chimpanzee–bonobo hybridization. RI from hybrid sterility or inviability was thought unlikely based on the short separation-to-introgression timeline. The forms of RI that typically develop in primates have relatively short timelines (especially for partial implementation); they generally preclude mating or influence hybrid survival and reproduction in certain contexts, and they have the potential to skew introgression directionality. These RI barriers are also consistent with some interpretations of the archaeological and fossil records, especially when behavioral, cognitive, morphological, and genetic differences between the two human species are taken into consideration. Differences potentially influencing patterns of survival and reproduction include interspecies violence, Neandertal xenophobia, provisioning behavior, and ontogenetic, morphological, and behavioral differences affecting matters such as kin and mate recognition, infanticide, and sexual selection. These factors may have skewed the occurrence of interbreeding or the survival and reproduction of hybrids in a way that might at least partially explain the pattern of introgression.


2021 ◽  
Vol 46 (3) ◽  
pp. 519-537
Author(s):  
Jeffrey P. Rose

Abstract— New molecular and ecological data have necessitated taxonomic revisions of several species complexes within Polemonium (Polemoniaceae), including P. foliosissimum, an herbaceous perennial widespread in the Intermountain West of the United States. As currently circumscribed, P. foliosissimum is a highly polymorphic species of four taxonomic varieties. One of the most striking morphological traits of the species is its diversity in flower color, which is unusual for the genus. Several species have been proposed based on this variation in flower color. However, these names have been treated as infraspecific taxa because previous authors have concluded that the presence of micropollen grains throughout the geographic range of the species complex indicated partial hybrid sterility and therefore incomplete barriers to gene flow. However, recent evidence suggests that micropollen is instead due to a gynodioecious breeding system. Using 128 nuclear loci and eight quantitative morphological traits, I clarify relationships and taxonomy within the species complex. I show that what is currently circumscribed as four varieties of P. foliosissimum represent five species that, in addition to differing in corolla color, differ in leaflet number, corolla size, and vegetative and floral pubescence. I propose a new species endemic to the White Mountains of southeastern Arizona, Polemonium apachianum. This study provides a new phylogenetic context and taxonomic circumscription to serve as a framework for future research on the evolution of floral color and sexual systems in a previously misunderstood but evolutionarily exciting system.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yukie Sato ◽  
Satoshi Fujiwara ◽  
Martijn Egas ◽  
Tomoko Matsuda ◽  
Tetsuo Gotoh

Abstract Background Evolution of reproductive isolation is an important process, generating biodiversity and driving speciation. To better understand this process, it is necessary to investigate factors underlying reproductive isolation through various approaches but also in various taxa. Previous studies, mainly focusing on diploid animals, supported the prevalent view that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection by showing a positive relationship between the degree of reproductive isolation and genetic distance. Haplodiploid animals are expected to generate additional insight into speciation, but few studies investigated the prevalent view in haplodiploid animals. In this study, we investigate whether the relationship also holds in a haplodiploid spider mite, Amphitetranychus viennensis (Zacher). Results We sampled seven populations of the mite in the Palaearctic region, measured their genetic distance (mtDNA) and carried out cross experiments with all combinations. We analyzed how lack of fertilization rate (as measure of prezygotic isolation) as well as hybrid inviability and hybrid sterility (as measures of postzygotic isolation) varies with genetic distance. We found that the degree of reproductive isolation varies among cross combinations, and that all three measures of reproductive isolation have a positive relationship with genetic distance. Based on the mtDNA marker, lack of fertilization rate, hybrid female inviability and hybrid female sterility were estimated to be nearly complete (99.0–99.9% barrier) at genetic distances of 0.475–0.657, 0.150–0.209 and 0.145–0.210, respectively. Besides, we found asymmetries in reproductive isolation. Conclusions The prevalent view on the evolution of reproductive barriers is supported in the haplodiploid spider mite we studied here. According to the estimated minimum genetic distance for total reproductive isolation in parent population crosses in this study and previous work, a genetic distance of 0.15–0.21 in mtDNA (COI) appears required for speciation in spider mites. Variations and asymmetries in the degree of reproductive isolation highlight the importance of reinforcement of prezygotic reproductive isolation through incompatibility and the importance of cytonuclear interactions for reproductive isolation in haplodiploid spider mites.


2021 ◽  
Vol 118 (38) ◽  
pp. e2101242118
Author(s):  
Samina Naseeb ◽  
Federico Visinoni ◽  
Yue Hu ◽  
Alex J. Hinks Roberts ◽  
Agnieszka Maslowska ◽  
...  

Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and –independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.


Sign in / Sign up

Export Citation Format

Share Document