Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments

Genome ◽  
1995 ◽  
Vol 38 (4) ◽  
pp. 795-802 ◽  
Author(s):  
Angeles Cuadrado ◽  
Nicolás Jouve

The molecular characterization of C-banded regions of Secale montanum Guss. by means of in situ hybridization was performed in order to provide new information about their chromosome structure relative to cultivated rye, Secale cereale L. Accurate identification of individual chromosomes was achieved using simultaneous and (or) successive fluorescent in situ hybridization (FISH) and C-banding. FISH identification was performed using total rye DNA, three highly repetitive rye DNA sequences (pSc119.2, pSc74, and pSc34), and the ribosomal RNA probes pTa71 (18S, 5.8S, and 26S rDNA) and pTa794 (5S rDNA). FISH was also used to identify the chromosome segment involved in two spontaneous translocation lines recovered from a 'Chinese Spring' – S. montanum wheat–rye addition line. FISH analysis revealed the exact translocation breakpoints and allowed the identification of the transferred rye segments. The value of this type of analysis is discussed.Key words: Secale cereale, Secale montanum, rye, repetitive DNA, fluorescence in situ hybridization.

Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 710-717 ◽  
Author(s):  
B. Kolano ◽  
B.W. Gardunia ◽  
M. Michalska ◽  
A. Bonifacio ◽  
D. Fairbanks ◽  
...  

The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18–24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18–24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12–13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12–13P was very similar to GISH results, suggesting that the 12–13P sequence constitutes a major part of the repetitive DNA of C. quinoa.


Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 293-306 ◽  
Author(s):  
Ekaterina D. Badaeva ◽  
Bernd Friebe ◽  
Bikram S. Gill

Genome differentiation in 12 diploid Aegilops species was analyzed using in situ hybridization with the highly repetitive DNA sequences pSc119 and pAs1 and C-banding. Chromosomes of all these diploid Aegilops species hybridized with the pSc119 probe; however, the level of hybridization and labeling patterns differed among genomes. Only four species (Ae. squarrosa, Ae. comosa, Ae. heldreichii, and Ae. uniaristata) showed distinct hybridization with pAs1. The labeling patterns were species-specific and chromosome-specific. Differences in in situ hybridization (ISH) patterns, also observed by C-banding, exist between the karyotypes of Ae. comosa and Ae. heldreichii, suggesting that they are separate, although closely related, subspecies. The S genome of Ae. spelioides was most similar to the B and G genomes of polyploid wheats on the basis of both C-banding and ISH patterns, but was different from other species of section Sitopsis. These species had different C-banding patterns but they were similar to each other and to Ae. mutica in the distribution of pSc119 hybridization sites. Two types of labeling were detected in Ae. squarrosa with the pAs1 probe. The first resembled that of the D-genome chromosomes of bread wheat, Triticum aestivum L. em. Thell., while the second was similar to the D genome of some of the polyploid Aegilops species. Relationships among diploid Aegilops species and the possible mechanisms of genome differentiation are discussed. Key words : wheat, Triticum, Aegilops, in situ hybridization, C-banding, evolution.


2021 ◽  
pp. 112067212110307
Author(s):  
Raquel María Moral ◽  
Carlos Monteagudo ◽  
Javier Muriel ◽  
Lucía Moreno ◽  
Ana María Peiró

Introduction: Conjunctival melanoma is extremely rare in children and has low rates of resolution. Definitive histopathological diagnosis based exclusively on microscopic findings is sometimes difficult. Thus, early diagnosis and adequate treatment are essential to improve clinical outcomes. Clinical case: We present the first case in which the fluorescent in situ hybridization (FISH) diagnostic technique was applied to a 10-year-old boy initially suspected of having amelanotic nevi in his right eye. Based on the 65% of tumor cells with 11q13 (CCND1) copy number gain and 33% with 6p25 (RREB1) gain as measured by the FISH analysis, and on supporting histopathological findings, the diagnosis of conjunctival melanoma could be made. Following a larger re-excision, adjuvant therapy with Mitomycin C (MMC), cryotherapy and an amniotic membrane graft, the patient has remained disease-free during 9 years of long-term follow-up. Case discussion: Every ophthalmologist should remember to consider and not forget the possibility of using FISH analyses during the differential diagnosis of any suspicious conjunctival lesions. Genetic techniques, such as FISH, have led to great advances in the classification of ambiguous lesions. Evidence-based guidelines for diagnosing conjunctival melanoma in the pediatric population are needed to determine the most appropriate strategy for this age group.


2011 ◽  
Vol 30 (9) ◽  
pp. 1779-1786 ◽  
Author(s):  
Kun Yang ◽  
Hecui Zhang ◽  
Richard Converse ◽  
Yong Wang ◽  
Xiaoying Rong ◽  
...  

Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 724-732 ◽  
Author(s):  
Palma Finelli ◽  
Sonia Fabris ◽  
Savina Zagano ◽  
Luca Baldini ◽  
Daniela Intini ◽  
...  

Abstract Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus at chromosome 14q32 represent a common mechanism of oncogene activation in lymphoid malignancies. In multiple myeloma (MM), variable chromosome partners have been identified by conventional cytogenetics, including the 11q13, 8q24, 18q21, and 6p21 loci. We and others have recently reported a novel, karyotypically undetectable chromosomal translocation t(4;14)(p16.3;q32) in MM-derived cell lines, as well as in primary tumors. The 4p16.3 breakpoints are relatively scattered and located less than 100 kb centromeric of the fibroblast growth factor receptor 3 (FGFR3) gene or within the recently identified WHSC1 gene, both of which are apparently deregulated by the translocation. To assess the frequency of the t(4;14)(p16.3;q32) translocation in MM, we performed a double-color fluorescent in situ hybridization (FISH) analysis of interphase nuclei with differently labeled probes specific for the IGH locus (a pool of plasmid clones specific for the IGH constant regions) or 4p16.3 (yeast artificial chromosome (YAC) 764-H1 spanning the region involved in breakpoints). Thirty MM patients, the MM-derived cell lines KMS-11 and OPM2, and six normal controls were examined. The identification of a t(4;14) translocation, evaluated as the presence of a der(14) chromosome, was based on the colocalization of signals specific for the two probes; a cutoff value of 15% (mean + 3 standard deviation [SD]) derived from the interphase FISH of the normal controls (range, 5% to 11%; mean ± SD, 8.16 ± 2.2) was used for the quantification analysis. In interphase FISH, five patients (one in clinical stage I, two in stage II, one in stage III, and a plasma cell leukemia) were found to be positive (≈15%). FISH metaphases with split or colocalized signals were detected in only two of the translocated cases and confirmed the pattern found in the interphase nuclei. Furthermore, in three of the five cases with the translocation, FISH analysis with the IGH joining probe (JH) showed the presence of the reciprocal product of the translocation [der(4) chromosome]. Overall, our study indicates that the t(4;14)(p16.3;q32) chromosomal translocation is a recurrent event in MM tumors and may contribute towards the detection of this lesion and our understanding of its pathogenetic and clinical implications in MM.


1988 ◽  
Vol 48 (2) ◽  
pp. 99-102 ◽  
Author(s):  
M.G. Kent ◽  
K.O. Elliston ◽  
W. Shroeder ◽  
K.S. Guise ◽  
S.S. Wachtel

Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1061-1069 ◽  
Author(s):  
A. Cuadrado ◽  
N. Jouve ◽  
C. Ceoloni

The molecular characterization of heterochromatin in six lines of rye has been performed using fluorescence in situ hybridization (FISH). The highly repetitive rye DNA sequences pSc 119.2, pSc74, and pSc34, and the probes pTa71 and pSc794 containing the 25S–5.8S–18S rDNA (NOR) and the 5S rDNA multigene families, respectively, were used. This allowed the individual identification of all seven rye chromosomes and most chromosome arms in all lines. All varieties showed similar but not identical patterns. A standard in situ hybridization map was constructed following the nomenclature system recommended for C-bands. All FISH sites observed appeared to correspond well with C-band locations, but not all C-banding sites coincided with hybridization sites of the repetitive DNA probes used. Quantitative and qualitative differences between different varieties were found for in situ hybridization response at corresponding sites. Variation between plants and even between homologous chromosomes of the same plant was found in open-pollinated lines. In inbred lines, the in situ pattern of the homologues was practically identical and no variation between plants was detected. The observed quantitative and qualitative differences are consistent with a corresponding variation for C-bands detected both within and between cultivars.Key words: fluorescence in situ hybridization, repetitive DNA, rye, Secale cereale, polymorphism.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 724-732 ◽  
Author(s):  
Palma Finelli ◽  
Sonia Fabris ◽  
Savina Zagano ◽  
Luca Baldini ◽  
Daniela Intini ◽  
...  

Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus at chromosome 14q32 represent a common mechanism of oncogene activation in lymphoid malignancies. In multiple myeloma (MM), variable chromosome partners have been identified by conventional cytogenetics, including the 11q13, 8q24, 18q21, and 6p21 loci. We and others have recently reported a novel, karyotypically undetectable chromosomal translocation t(4;14)(p16.3;q32) in MM-derived cell lines, as well as in primary tumors. The 4p16.3 breakpoints are relatively scattered and located less than 100 kb centromeric of the fibroblast growth factor receptor 3 (FGFR3) gene or within the recently identified WHSC1 gene, both of which are apparently deregulated by the translocation. To assess the frequency of the t(4;14)(p16.3;q32) translocation in MM, we performed a double-color fluorescent in situ hybridization (FISH) analysis of interphase nuclei with differently labeled probes specific for the IGH locus (a pool of plasmid clones specific for the IGH constant regions) or 4p16.3 (yeast artificial chromosome (YAC) 764-H1 spanning the region involved in breakpoints). Thirty MM patients, the MM-derived cell lines KMS-11 and OPM2, and six normal controls were examined. The identification of a t(4;14) translocation, evaluated as the presence of a der(14) chromosome, was based on the colocalization of signals specific for the two probes; a cutoff value of 15% (mean + 3 standard deviation [SD]) derived from the interphase FISH of the normal controls (range, 5% to 11%; mean ± SD, 8.16 ± 2.2) was used for the quantification analysis. In interphase FISH, five patients (one in clinical stage I, two in stage II, one in stage III, and a plasma cell leukemia) were found to be positive (≈15%). FISH metaphases with split or colocalized signals were detected in only two of the translocated cases and confirmed the pattern found in the interphase nuclei. Furthermore, in three of the five cases with the translocation, FISH analysis with the IGH joining probe (JH) showed the presence of the reciprocal product of the translocation [der(4) chromosome]. Overall, our study indicates that the t(4;14)(p16.3;q32) chromosomal translocation is a recurrent event in MM tumors and may contribute towards the detection of this lesion and our understanding of its pathogenetic and clinical implications in MM.


Sign in / Sign up

Export Citation Format

Share Document