translocation breakpoints
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 15)

H-INDEX

45
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1836
Author(s):  
Anna Clara Schnause ◽  
Katalin Komlosi ◽  
Barbara Herr ◽  
Jürgen Neesen ◽  
Paul Dremsek ◽  
...  

Marfan syndrome (MFS) is a hereditary connective tissue disease caused by heterozygous mutations in the fibrillin-1 gene (FBN1) located on chromosome 15q21.1. A complex chromosomal rearrangement leading to MFS has only been reported in one case so far. We report on a mother and daughter with marfanoid habitus and no pathogenic variant in the FBN1 gene after next generation sequencing (NGS) analysis, both showing a cytogenetically reciprocal balanced translocation between chromosomes 2 and 15. By means of fluorescence in situ hybridization of Bacterial artificial chromosome (BAC) clones from the breakpoint area on chromosome 15 the breakpoint was narrowed down to a region of approximately 110 kb in FBN1. With the help of optical genome mapping (OGM), the translocation breakpoints were further refined on chromosomes 2 and 15. Sequencing of the regions affected by the translocation identified the breakpoint of chromosome 2 as well as the breakpoint of chromosome 15 in the FBN1 gene leading to its disruption. To our knowledge, this is the first report of patients with typical clinical features of MFS showing a cytogenetically reciprocal translocation involving the FBN1 gene. Our case highlights the importance of structural genome variants as an underlying cause of monogenic diseases and the useful clinical application of OGM in the elucidation of structural variants.


2021 ◽  
Vol 22 (22) ◽  
pp. 12186
Author(s):  
Yuri Eidelman ◽  
Ilya Salnikov ◽  
Svetlana Slanina ◽  
Sergey Andreev

The long-standing question in radiation and cancer biology is how principles of chromosome organization impact the formation of chromosomal aberrations (CAs). To address this issue, we developed a physical modeling approach and analyzed high-throughput genomic data from chromosome conformation capture (Hi-C) and translocation sequencing (HTGTS) methods. Combining modeling of chromosome structure and of chromosomal aberrations induced by ionizing radiation (IR) and nuclease we made predictions which quantitatively correlated with key experimental findings in mouse chromosomes: chromosome contact maps, high frequency of cis-translocation breakpoints far outside of the site of nuclease-induced DNA double-strand breaks (DSBs), the distinct shape of breakpoint distribution in chromosomes with different 3D organizations. These correlations support the heteropolymer globule principle of chromosome organization in G1-arrested pro-B mouse cells. The joint analysis of Hi-C, HTGTS and physical modeling data offers mechanistic insight into how chromosome structure heterogeneity, globular folding and lesion dynamics drive IR-recurrent CAs. The results provide the biophysical and computational basis for the analysis of chromosome aberration landscape under IR and nuclease-induced DSBs.


2021 ◽  
Author(s):  
Shan Huang ◽  
Huiling Wu ◽  
Yunwei Qi ◽  
Liqiang Wei ◽  
Xiaodan Lv ◽  
...  

Abstract We describe the first case of two chromosomal abnormalities, balanced reciprocal translocation t(17;22)(p11.2;q11.2) and a microduplication in the region 10q23.31, in an infertility man suffering from teratospermia. Several genes located on the translocation breakpoints or the region of duplication show rich expression in the tissue of testis. They have been reported to be associated with developmental disorder and retardation, which might also be the risk factors affecting in spermatogonial differentiation and spermatogenesis. More studies should be carried out for identifification of new genes associated with semen quality. Our case might support the opinion that haploinsufficiency of the testis-expressed gene could be the cause of sperm immotility and abnormal sperm morphology. The two chromosomal abnormalities that carry additional reproductive risks, is apparently harmful with regard to the male infertility, and could contribute to the genomic instability resulting in disease.


2021 ◽  
Author(s):  
Johannes Geibel ◽  
Nora Paulina Praefke ◽  
Steffen Weigend ◽  
Henner Simianer ◽  
Christian Reimer

Abstract BackgroundStructural variants (SV) are causative for some prominent phenotypic traits of livestock as different comb types in chickens or color patterns in pigs. Their effects on production traits are also increasingly studied. Nevertheless, accurately calling SV remains challenging. It is therefore of interest, whether close-by single nucleotide polymorphisms (SNPs) are in strong linkage disequilibrium (LD) with SVs and can serve as markers. Literature comes to different conclusions on whether SVs are in LD to SNPs on the same level as SNPs to other SNPs. The present study aimed to generate a precise SV callset from whole-genome short-read sequencing (WGS) data for three commercial chicken populations and to evaluate LD patterns between the called SV and surrounding SNPs.ResultsThe final callset consisted of 12,294,329 bivariate SNPs, 4,301 deletions (DEL), 224 duplications (DUP), 218 inversions (INV) and 117 translocation breakpoints (BND). While average LD between DELs and SNPs was at the same level as between SNPs and SNPs, LD between other SVs and SNPs was strongly reduced (DUP: 40 %, INV: 27 %, BND: 19 % of between-SNP LD). A main factor for the reduced LD was the presence of local minor allele frequency differences, which accounted for 50 % of the difference between SNP – SNP and DUP – SNP LD. This was potentially accompanied by lower genotyping accuracies for DUP, INV and BND compared with SNPs and DELs. An evaluation of the presence of tag SNPs (SNP in highest LD to the variant of interest) further revealed DELs to be slightly less tagged by WGS SNPs than WGS SNPs by other SNPs. This difference, however, was no longer present when reducing the pool of potential tag SNPs to SNPs located on four different chicken genotyping arrays.ConclusionsThe results imply that genomic variance due to DELs in the chicken populations studied can be captured by different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling might be advisable for DUP, INV, and BND effects.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Y Shimin ◽  
C Dehua ◽  
L Keli ◽  
L Xiurong ◽  
H Liang ◽  
...  

Abstract Study question For X-autosome translocation [t(X-A)] carriers, is it a more applicable preimplantation genetic testing (PGT) strategy, that distinguishing noncarrier from euploid/ balanced embryos and prioritized transfer? Summary answer Noncarrier and carrier embryos discrimination in PGT is an applicable strategy to avoid transferring genetic and reproductive risks to the offspring of t(X-A) carriers. What is known already Balanced t(X-A) is a specific reciprocal translocation, with a higher risk of detrimental phenotype and fertility issues compared to individuals with autosomal translocation. Alternative X-chromosome inactivation (XCI) is a specific pathogenic mechanism in this population. For carrier offspring of couples with t(X-A), the genetic counseling is challenged in both the prenatal and postpartum stages, because of the complexity and severity of phenotype outcomes that are unpredictable and associated with the complex XCI mechanism. Therefore, caution is necessary when designing a PGT strategy for couples with t(X-A). Study design, size, duration A retrospective study. We collected a 3-year-old girl with maternal translocation 46,X,t(X;1)(q28;p31.1) presenting with multiple congenital disabilities. Three couples with female t(X-A) carrier requesting for PGT. Participants/materials, setting, methods Karyotype analysis, whole-exome sequencing (WES), and X inactivation analysis were performed for the girl with congenital cardiac anomaly, language defect, and mild neurodevelopmental delay. PGT based on next-generation sequencing following the microdissecting junction region to distinguish noncarrier and carrier embryos were used in three couples with female t(X-A) carrier (Cases 1–3). Main results and the role of chance The girl carried a maternal balanced translocation 46,X,t(X;1)(q28;p31.1). WES revealed none monogenic mutation related to her phenotype, but she carried a rare skewed inactivation of the translocation X chromosome and spread to the adjacent interstitial 1p segment, contrary to her mother. All translocation breakpoints of Cases 1–3 were successfully identified and each couple underwent one PGT cycle. Thirty oocytes were retrieved, and 13 blastocysts were eligible for biopsy, of which 6 (46.15%) embryos were balanced and only 4 were noncarriers. Three frozen embryo transfers with noncarrier embryos resulted in the birth of two healthy children (one girl and one boy), who were subsequently confirmed to have normal karyotypes. We reported a girl with multiple congenital disabilities resulting from maternally balanced t(X-A) and validated that noncarrier and carrier embryo discrimination is an effective and applicable strategy for avoiding transferring genetic and reproductive risks to the offspring from t(X-A) carriers. Limitations, reasons for caution Here, we reported a girl with multiple congenital disabilities resulting from maternally balanced t(X-A) found different XCI patterns, while we did not further determine the mechanism causing the different XCI patterns between the girl and her mother. Wider implications of the findings: We demonstrated passing on a balanced t(X-A) may result in clinical manifestations associated with the X-inactivation, and verified the PGT strategy, that distinguishing normal and carrier embryos in can widely applied in t(X-A) carrier couples to avoid the genetic and reproductive risk of transferring t(X-A) to the next generation. Trial registration number the National Key Research & Developmental Program of China (2018YFC1004900), the National Natural Science Foundation of China (81771645 and 81971447), the Key Grant of Prevention and Treatment of Birth Defect from Hunan Province (2019SK1012), Hunan Provincial Grant for Innovative Province Construction (2019SK4012) and the Research Grant of CITIC-Xiangya (YNXM–201916).


Planta ◽  
2021 ◽  
Vol 254 (1) ◽  
Author(s):  
Qiongxian Lu ◽  
Christoph Dockter ◽  
Nick Sirijovski ◽  
Shakhira Zakhrabekova ◽  
Udda Lundqvist ◽  
...  

Abstract Main conclusion Both mutant ert-c.1 and ert-d.7 carry T2-T3 translocations in the Ert-c gene. Principal coordinate analyses revealed the translocation types and translocation breakpoints. Mutant ert-d.7 is an Ert-cErt-d double mutant. Abstract Mutations in the Ert-c and Ert-d loci are among the most common barley mutations affecting plant architecture. The mutants have various degrees of erect and compact spikes, often accompanied with short and stiff culms. In the current study, complementation tests, linkage mapping, principal coordinate analyses and fine mapping were conducted. We conclude that the original ert-d.7 mutant does not only carry an ert-d mutation but also an ert-c mutation. Combined, mutations in Ert-c and Ert-d cause a pyramid-dense spike phenotype, whereas mutations in only Ert-c or Ert-d give a pyramid and dense phenotype, respectively. Associations between the Ert-c gene and T2-T3 translocations were detected in both mutant ert-c.1 and ert-d.7. Different genetic association patterns indicate different translocation breakpoints in these two mutants. Principal coordinate analysis based on genetic distance and screening of recombinants from all four ends of polymorphic regions was an efficient way to narrow down the region of interest in translocation-involved populations. The Ert-c gene was mapped to the marker interval of 2_0801to1_0224 on 3HL near the centromere. The results illuminate a complex connection between two single genes having additive effects on barley spike architecture and will facilitate the identification of the Ert-c and Ert-d genes.


Author(s):  
T Yammine ◽  
N Reynaud ◽  
H Lejeune ◽  
F Diguet ◽  
Pa Rollat-Farnier ◽  
...  

Abstract Male infertility affects about 7% of the general male population. Balanced structural chromosomal rearrangements are observed in 0.4 to 1.4% of infertile males and are considered as a well-established cause of infertility. However, underlying pathophysiological mechanisms still need to be clarified. A strategy combining standard and high throughput cytogenetic and molecular technologies was applied in order to identify the candidate genes that might be implicated in the spermatogenesis defect in three male carriers of different balanced translocations. Fluorescence in situ hybridization (FISH) and whole genome paired-end sequencing were used to characterize translocation breakpoints at the molecular level while exome sequencing was performed in order to exclude the presence of any molecular event independent from the chromosomal rearrangement in the patients. All translocation breakpoints were characterized in the three patients. We identified four variants: a position effect on LACTB2 gene in Patient 1, a heterozygous CTDP1 gene disruption in Patient 2, two single nucleotide variations (SNVs) in DNAH5 gene and a heterozygous 17q12 deletion in Patient 3. The variants identified in this study need further validation to assess their roles in male infertility. This study shows that beside the mechanical effect of structural rearrangement on meiosis, breakpoints could result in additional alterations such as gene disruption or position effect. Moreover, additional SNVs or copy number variations may be fortuitously present and could explain the variable impact of chromosomal rearrangements on spermatogenesis. In conclusion, this study confirms the relevance of combining different cytogenetic and molecular techniques to investigate patients with spermatogenesis disorders and structural rearrangements on genomic scale.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dun Liu ◽  
Chuangqi Chen ◽  
Xiqian Zhang ◽  
Mei Dong ◽  
Tianwen He ◽  
...  

Abstract Background Preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) is widely applied in couples with single reciprocal translocation to increase the chance for a healthy live birth. However, limited knowledge is known on the data of PGT-SR when both parents have a reciprocal translocation. Here, we for the first time present a rare instance of PGT-SR for a non-consanguineous couple in which both parents carried an independent balanced reciprocal translocation and show how relevant genetic counseling data can be generated. Methods The precise translocation breakpoints were identified by whole genome low-coverage sequencing (WGLCS) and Sanger sequencing. Next-generation sequencing (NGS) combining with breakpoint-specific polymerase chain reaction (PCR) was used to define 24-chromosome and the carrier status of the euploid embryos. Results Surprisingly, 2 out of 3 day-5 blastocysts were found to be balanced for maternal reciprocal translocation while being normal for paternal translocation and thus transferable. The transferable embryo rate was significantly higher than that which would be expected theoretically. Transfer of one balanced embryo resulted in the birth of a healthy boy. Conclusion(s) Our data of PGT-SR together with a systematic review of the literature should help in providing couples carrying two different reciprocal translocations undergoing PGT-SR with more appropriate genetic counseling.


2020 ◽  
Author(s):  
Dun Liu ◽  
Chuangqi Chen ◽  
Xiqian Zhang ◽  
Mei Dong ◽  
Tianwen He ◽  
...  

Abstract Background: Preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) is widely applied in couples with single reciprocal translocation to increase the chance for a healthy live birth. However, limited knowledge is known on the data of PGT-SR when both parents have a reciprocal translocation. Here, we for the first time present a rare instance of PGT-SR for a non-consanguineous couple in which both parents carried an independent balanced reciprocal translocation and show how relevant genetic counseling data can be generated.Methods: The precise translocation breakpoints were identified by whole genome low-coverage sequencing (WGLCS) and Sanger sequencing. Next-generation sequencing (NGS) combining with breakpoint-specific polymerase chain reaction (PCR) was used to define 24-chromosome and the carrier status of the euploid embryos.Results: Surprisingly, 66.7% day-5 blastocysts were found to be balanced for maternal reciprocal translocation while being normal for paternal translocation and thus transferable. The transferable embryo rate was significantly higher than that which would be expected theoretically. Transfer of one balanced embryo resulted in the birth of a healthy boy. Conclusion(s): Our data of PGT-SR together with a systematic review of the literature should help in providing couples carrying two different reciprocal translocations undergoing PGT-SR with more appropriate genetic counseling.


Sign in / Sign up

Export Citation Format

Share Document