Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat - Th. intermedium partial amphiploid and six derived chromosome addition lines

Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1217-1223 ◽  
Author(s):  
Qin Chen ◽  
R.L. Conner ◽  
A. Laroche ◽  
W.Q. Ji ◽  
K.C. Armstrong ◽  
...  
Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1217-1223 ◽  
Author(s):  
Qin Chen ◽  
R L Conner ◽  
A Laroche ◽  
W Q Ji ◽  
K C Armstrong ◽  
...  

The genomic origin of alien chromosomes present in a wheat - Thinopyrum intermedium partial amphiploid TAF46 (2n = 8x = 56) and six derived chromosome addition lines were analyzed by genomic in situ hybridization (GISH) using S genomic DNA from Pseudoroegneria strigosa (2n = 2x = 14, SS) as a probe. The GISH analysis clearly showed that the chromosome complement of the partial amphiploid TAF46 consists of an entire wheat genome plus one synthetic genome consisting of a mixture of six S genome chromosomes and eight J (=E) genome chromosomes derived from Th. intermedium (2n = 6x = 42, JJJsJsSS). There were no Js genome chromosomes present in TAF46. The J genome chromosomes present in TAF46 displayed a unique GISH hybridization pattern with the S genomic DNA probe, in which S genome DNA strongly hybridized at the terminal regions and weakly hybridized over the remaining parts of the chromosomes. This provides a diagnostic marker for distinguishing J genome chromosomes from Js or S genome or wheat ABD genome chromosomes. The genomic origin of the alien chromosomes present in the six derived chromosome addition lines were identified by their characteristic GISH hybridization patterns with S genomic DNA probe. GISH analysis showed that addition lines L1, L2, L3, and L5 carried one pair of J genome chromosomes, while addition lines L4 and L7 each carried one pair of S genome chromosomes. GISH patterns detected by the S genome probe on addition line of L1 were identical to those of the J genome chromosomes present in the partial amphiploid TAF46, suggesting that these chromosomes were not structurally altered when they were transferred from TAF46 to addition lines.Key words: GISH, genomic composition, addition lines, Thinopyrum intermedium, partial amphiploid.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 731-742 ◽  
Author(s):  
Bernd Friebe ◽  
Neal Tuleen ◽  
Jiming Jiang ◽  
Bikram S. Gill

C-banding polymorphism was analyzed in 17 accessions of Triticum longissimum from Israel and Jordan, and a generalized idiogram of this species was established. C-banding analysis was further used to identify two sets of disomic T. aestivum – T. longissimum chromosome addition lines and 13 ditelosomic addition lines and one monotelosomic (6S1L) addition line. C-banding was also used to identify T. aestivum – T. longissimum chromosome substitution and translocation lines. Two major nucleolus organizing regions (NORs) on 5S1 and 6S1 and one minor NOR on 1S1 were detected by in situ hybridization using a 18S–26S rDNA probe. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of T. longissimum chromosomes. The T. longissimum chromosomes compensate rather well and fertility was restored even in substitution lines involving wheat chromosomes 2A, 4B, and 6B that contain major fertility genes. Except for the deleterious gametocidal genes, T. longissimum can be considered as a suitable donor of useful genes for wheat improvement.Key words: Triticum aestivum, Triticum longissimum, homoeology, C-banding, in situ hybridization.


Genome ◽  
2003 ◽  
Vol 46 (5) ◽  
pp. 906-913 ◽  
Author(s):  
Hongjie Li ◽  
Qin Chen ◽  
Robert L Conner ◽  
Beihai Guo ◽  
Yanmin Zhang ◽  
...  

Leaf rust (caused by Puccinia triticina Eriks.) occurs annually in most wheat-growing areas of the world. Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C. Wang has provided several leaf rust resistance genes to protect wheat from this fungal disease. Three chromosome substitution lines, Ji806, Ji807, and Ji859, and two chromosome addition lines, Ji791 and Ji924, with a winter growing habit were developed from crosses between wheat (Triticum aestivum L. em Thell.) and the wheat – Th. ponticum partial amphiploid line 693. These lines were resistant to leaf rust isolates from China. Sequence-tagged site (STS) analysis with the J09-STS marker, which is linked to the gene Lr24, revealed that the partial amphiploid line 693 and all of the substitution and addition lines carried gene Lr24. Genomic in situ hybridization (GISH) analysis was carried out on chromosome preparations using total genomic DNA from Pseudoroegneria strigosa (M. Bieb) A. Löve (St genome, 2n = 14) as a probe in the presence of total genomic DNA from T. aestivum 'Chinese Spring' wheat (ABD genomes, 2n = 42). The GISH analysis demonstrated that these lines had a pair of chromosomes displaying the typical pattern of a Js genome chromosome. This indicates that the chromosome that carries gene Lr24 belonged to the Js genome of Th. ponticum. In addition to 40 wheat chromosomes, eight Js and eight J genome chromosomes were also differentiated by GISH in the partial amphiploid line 693. Since most sources of Lr24 have a red grain color, the white-colored seeds in all of these substitution and addition lines, together with high protein content in some of the lines, make them very useful as a donor source for winter wheat breeding programs.Key words: Lr24, genomic in situ hybridization, sequence-tagged site, random amplified polymorphic DNA.


Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 299-304 ◽  
Author(s):  
S.N. Haider Ali ◽  
Dirk Jan Huigen ◽  
M.S. Ramanna ◽  
Evert Jacobsen ◽  
Richard G.F. Visser

Genome ◽  
1991 ◽  
Vol 34 (3) ◽  
pp. 448-452 ◽  
Author(s):  
Y. Mukai ◽  
B. S. Gill

A technique for in situ hybridization is reported that can be used to detect barley chromatin in wheat background using total genomic DNA as a probe. A 1:2 ratio of biotin-labeled genomic DNA of barley to blocking (unlabeled, sheared) DNA of wheat was sufficient to reveal brownish labeled barley chromosome domains against bluish background of unlabeled wheat chromatin in metaphase, prophase, and interphase nuclei of wheat-barley addition lines. Using this procedure, the behavior of specific barley chromosomes was analyzed in interphase and prophase cells. In prophase cells, the 6H chromosome was always associated with a nucleolus. A genomic clone of α-amylase gene (gRAmy56) that contains a barley-specific dispersed repeat sequence was also used to detect barley chromosomes in a wheat background.Key words: Hordeum vulgare, Triticum aestivum, genomic in situ hybridization, biotin, nucleolar organizing region.


Genome ◽  
2009 ◽  
Vol 52 (9) ◽  
pp. 748-754 ◽  
Author(s):  
A. Sepsi ◽  
I. Molnár ◽  
M. Molnár-Láng

The absence of chromosome 7D in the wheat–Thinopyrum ponticum partial amphiploid BE-1 was detected previously by multicolour genomic in situ hybridization, sequential FISH (fluorescence in situ hybridization) using repetitive DNA probes, and SSR marker analysis. In the present study the previous cytogenetic and SSR marker analyses were expanded to include 25 other SSR markers assigned to wheat chromosomes 7A and 7D to confirm the presence of a 7A.7D translocation and to specify its composition. An almost complete chromosome 7A and a short chromosome segment derived from the terminal region of 7DL were detected, confirming the presence of a terminal translocation involving the distal regions of 7AL and 7DL. In both cases the position of the translocation breakpoint was different from that of known deletion lines. The identification of the 7AL.7DL translocation and its breakpoint position provides a new physical landmark for future physical mapping studies, opening up the possibility of more precise localization of genes or molecular markers within the terminal regions of 7DL and 7AL.


Sign in / Sign up

Export Citation Format

Share Document