genomic in situ hybridization
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 11)

H-INDEX

30
(FIVE YEARS 2)

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
María-Dolores Rey ◽  
Carmen Ramírez ◽  
Azahara C. Martín

Polyploidization, or whole genome duplication (WGD), has an important role in evolution and speciation. One of the biggest challenges faced by a new polyploid is meiosis, in particular, discriminating between multiple related chromosomes so that only homologs recombine to ensure regular chromosome segregation and fertility. Here, we report the production of two new hybrids formed by the genomes of species from three different genera: a hybrid between Aegilops tauschii (DD), Hordeum chilense (HchHch), and Secale cereale (RR) with the haploid genomic constitution HchDR (n = 7× = 21); and a hybrid between Triticum turgidum spp. durum (AABB), H. chilense, and S. cereale with the constitution ABHchR (n = 7× = 28). We used genomic in situ hybridization and immunolocalization of key meiotic proteins to establish the chromosome composition of the new hybrids and to study their meiotic behavior. Interestingly, there were multiple chromosome associations at metaphase I in both hybrids. A high level of crossover (CO) formation was observed in HchDR, which shows the possibility of meiotic recombination between the different genomes. We succeeded in the duplication of the ABHchR genome, and several amphiploids, AABBHchHchRR, were obtained and characterized. These results indicate that recombination between the genera of three economically important crops is possible.


2020 ◽  
Vol 21 (12) ◽  
pp. 4280 ◽  
Author(s):  
Dominika Idziak-Helmcke ◽  
Tomasz Warzecha ◽  
Marta Sowa ◽  
Marzena Warchoł ◽  
Kinga Dziurka ◽  
...  

The nucleus architecture of hybrid crop plants is not a well-researched topic, yet it can have important implications for their genetic stability and usefulness in the successful expression of agronomically desired traits. In this work we studied the spatial distribution of introgressed maize chromatin in oat × maize addition lines with the number of added maize chromosomes varying from one to four. The number of chromosome additions was confirmed by genomic in situ hybridization (GISH). Maize chromosome-specific simple sequence repeat (SSR) markers were used to identify the added chromosomes. GISH on 3-D root and leaf nuclei was performed to assess the number, volume, and position of the maize-chromatin occupied regions. We revealed that the maize chromosome territory (CT) associations of varying degree prevailed in the double disomic lines, while CT separation was the most common distribution pattern in the double monosomic line. In all analyzed lines, the regions occupied by maize CTs were located preferentially at the nuclear periphery. A comparison between the tissues showed that the maize CTs in the leaf nuclei are positioned closer to the center of the nucleus than in the root nuclei. These findings shed more light on the processes that shape the nucleus architecture in hybrids.


2020 ◽  
Vol 21 (5) ◽  
pp. 1861
Author(s):  
Yajuan Wang ◽  
Deyu Long ◽  
Yanzhen Wang ◽  
Changyou Wang ◽  
Xinlun Liu ◽  
...  

Aegilops geniculata Roth has been used as a donor of disease-resistance genes, to enrich the gene pool for wheat (Triticum aestivum) improvement through distant hybridization. In this study, the wheat–Ae. geniculata alien disomic substitution line W16998 was obtained from the BC1F8 progeny of a cross between the common wheat ‘Chinese Spring’ (CS) and Ae. geniculata Roth (serial number: SY159//CS). This line was identified using cytogenetic techniques, analysis of genomic in situ hybridization (GISH), functional molecular markers (Expressed sequence tag-sequence-tagged site (EST–STS) and PCR-based landmark unique gene (PLUG), fluorescence in situ hybridization (FISH), sequential fluorescence in situ hybridization–genomic in situ hybridization (sequential FISH–GISH), and assessment of agronomic traits and powdery mildew resistance. During the anaphase of meiosis, these were evenly distributed on both sides of the equatorial plate, and they exhibited high cytological stability during the meiotic metaphase and anaphase. GISH analysis indicated that W16998 contained a pair of Ae. geniculata alien chromosomes and 40 common wheat chromosomes. One EST–STS marker and seven PLUG marker results showed that the introduced chromosomes of Ae. geniculata belonged to homoeologous group 7. Nullisomic–tetrasomic analyses suggested that the common wheat chromosome, 7A, was absent in W16998. FISH and sequential FISH–GISH analyses confirmed that the introduced Ae. geniculata chromosome was 7Mg. Therefore, W16998 was a wheat–Ae. geniculata 7Mg (7A) alien disomic substitution line. Inoculation of isolate E09 (Blumeria graminis f. sp. tritici) in the seedling stage showed that SY159 and W16998 were resistant to powdery mildew, indeed nearly immune, whereas CS was highly susceptible. Compared to CS, W16998 exhibited increased grain weight and more spikelets, and a greater number of superior agronomic traits. Consequently, W16998 was potentially useful. Germplasms transfer new disease-resistance genes and prominent agronomic traits into common wheat, giving the latter some fine properties for breeding.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Qinzheng Zhao ◽  
Yunzhu Wang ◽  
Yunfei Bi ◽  
Yufei Zhai ◽  
Xiaqing Yu ◽  
...  

Abstract Background Meiosis of newly formed allopolyploids frequently encounter perturbations induced by the merging of divergent and hybridizable genomes. However, to date, the meiotic properties of allopolyploids with dysploid parental karyotypes have not been studied in detail. The allotetraploid Cucumis ×hytivus (HHCC, 2n = 38) was obtained from interspecific hybridization between C. sativus (CC, 2n = 14) and C. hystrix (HH, 2n = 24) followed by chromosome doubling. The results of this study thus offer an excellent opportunity to explore the meiotic properties of allopolyploids with dysploid parental karyotypes. Results In this report, we describe the meiotic properties of five chromosomes (C5, C7, H1, H9 and H10) and two genomes in interspecific hybrids and C. ×hytivus (the 4th and 14th inbred family) through oligo-painting and genomic in situ hybridization (GISH). We show that 1) only two translocations carrying C5-oligo signals were detected on the chromosomes C2 and C4 of one 14th individual by the karyotyping of eight 4th and 36 14th plants based on C5- and C7-oligo painting, and possible cytological evidence was observed in meiosis of the 4th generation; 2) individual chromosome have biases for homoeologous pairing and univalent formation in F1 hybrids and allotetraploids; 3) extensive H-chromosome autosyndetic pairings (e.g., H-H, 25.5% PMCs) were observed in interspecific F1 hybrid, whereas no C-chromosome autosyndetic pairings were observed (e.g. C-C); 4) the meiotic properties of two subgenomes have significant biases in allotetraploids: H-subgenome exhibits higher univalent and chromosome lagging frequencies than C-subgenome; and 5) increased meiotic stability in the S14 generation compared with the S4 generation, including synchronous meiosis behavior, reduced incidents of univalent and chromosome lagging. Conclusions These results suggest that the meiotic behavior of two subgenomes has dramatic biases in response to interspecific hybridization and allopolyploidization, and the meiotic behavior harmony of subgenomes is a key subject of meiosis evolution in C. ×hytivus. This study helps to elucidate the meiotic properties and evolution of nascent allopolyploids with the dysploid parental karyotypes.


2019 ◽  
Vol 11 (11) ◽  
pp. 3153 ◽  
Author(s):  
David Kopecký ◽  
Lucie Horáková ◽  
Martin Duchoslav ◽  
Jaroslav Doležel

Alien chromosome introgressions can be used to introduce beneficial traits from one species into another. However, exploitation of the introgressions in breeding requires proper transmission of introgressed segments to consecutive generations. In xFestulolium hybrids chromosomes of Festuca and Lolium readily pair and recombine. This opens a way for introgression of traits (e.g., abiotic and biotic stress resistance) from Festuca into elite Lolium cultivars. However, retention of Festuca chromatin in xFestulolium is uncertain as several studies indicated its gradual elimination over generations of sexual reproduction. Here we investigated genome composition in two subsequent generations of four introgression xFestulolium (F. pratensis × L. multiflorum) cultivars using genomic in situ hybridization. We observed about 27–32% elimination of Festuca chromatin in a single round of multiplication. At this pace, Festuca chromatin would be completely eliminated in about four generations of seed multiplication. On the other hand, we observed that it is possible to increase the proportion of Festuca chromatin in the cultivars by proper selection of mating plants. Nevertheless, once selection is relaxed, the first round of the seed multiplication reverts the genome composition back to the Lolium type. Thus, it seems that amphiploid forms of xFestulolium with relatively stable hybrid genomes may be more promising material for future breeding than introgression lines.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 36 ◽  
Author(s):  
Ludmila Khrustaleva ◽  
Majd Mardini ◽  
Natalia Kudryavtseva ◽  
Rada Alizhanova ◽  
Dmitry Romanov ◽  
...  

We exploited the advantages of genomic in situ hybridization (GISH) to monitor the introgression process at the chromosome level using a simple and robust molecular marker in the interspecific breeding of bulb onion (Allium cepa L.) that is resistant to downy mildew. Downy mildew (Peronospora destructor [Berk.] Casp.) is the most destructive fungal disease for bulb onions. With the application of genomic in situ hybridization (GISH) and previously developed DMR1 marker, homozygous introgression lines that are resistant to downy mildew were successfully produced in a rather short breeding time. Considering that the bulb onion is a biennial plant, it took seven years from the F1 hybrid production to the creation of S2BC2 homozygous lines that are resistant to downy mildew. Using GISH, it was shown that three progeny plants of S2BC2 possessed an A. roylei homozygous fragment in the distal region of the long arm of chromosomes 3 in an A. cepa genetic background. Previously, it was hypothesized that a lethal gene(s) was linked to the downy mildew resistance gene. With the molecular cytogenetic approach, we physically mapped more precisely the lethal gene(s) using the homozygous introgression lines that differed in the size of the A. roylei fragments on chromosome 3.


Sign in / Sign up

Export Citation Format

Share Document