Wind-wave-induced suspension of mine tailings in disposal ponds – a case study

1991 ◽  
Vol 18 (6) ◽  
pp. 1047-1053 ◽  
Author(s):  
G. A. Lawrence ◽  
P. R. B. Ward ◽  
M. D. MacKinnon

Linear wave theory and wave hindcasting are applied to derive an expression for the depth of water needed to prevent the wind-wave-induced suspension of sediments in mine tailings ponds. The depth is expressed as a function of four factors: the threshold velocity, the wind velocity, the fetch over which the wind blows, and a factor based on the statistical distribution of wave heights. This study was motivated by the need to determine the thickness of water required to prevent the suspension of sludge solids in existing and proposed tailings ponds at Syncrude Canada Ltd.'s oil sands plant. Although data relevant to this problem are used to provide a specific example, the results are applicable whenever sediment suspension is caused by fetch-limited, deep water, wind waves. The results should be of particular use when the available data set is limited, e.g., for proposed tailings ponds. Key words: linear wave theory, wave hindcasting, wind-wave-induced suspension, threshold velocity, sludge capping, reclamation ponds, mine tailings ponds.

1982 ◽  
Vol 1 (18) ◽  
pp. 108
Author(s):  
Bernard LeMehaute ◽  
James Walker ◽  
John Headland ◽  
John Wang

A method of calculating nonlinear wave induced forces and moments on piles of variable diameter is presented. The method is based on the Morrison equation and the linear wave theory with correction parameters to account for convective inertial effects in the wave field. These corrections are based on the stream function wave theory by Dean (1974). The method permits one to take into account the added wave force due to marine growth in the intertidal zone or due to a protective jacket, and can also be used to calculate forces on braces and an array of piles.


2020 ◽  
Vol 13 (2) ◽  
pp. 479-499
Author(s):  
Irina Strelnikova ◽  
Gerd Baumgarten ◽  
Franz-Josef Lübken

Abstract. An advanced hodograph-based analysis technique to derive gravity-wave (GW) parameters from observations of temperature and winds is developed and presented as a step-by-step recipe with justification for every step in such an analysis. As the most adequate background removal technique the 2-D FFT is suggested. For an unbiased analysis of fluctuation whose amplitude grows with height exponentially, we propose applying a scaling function of the form exp (z∕(ςH)), where H is scale height, z is altitude, and the constant ς can be derived by a linear fit to the fluctuation profile and should be in the range 1–10. The most essential part of the proposed analysis technique consists of fitting cosine waves to simultaneously measured profiles of zonal and meridional winds and temperature and subsequent hodograph analysis of these fitted waves. The linear wave theory applied in this analysis is extended by introducing a wave packet envelope term exp⁡(-(z-z0)2/2σ2) that accounts for limited extent of GWs in the observational data set. The novelty of our approach is that its robustness ultimately allows for automation of the hodograph analysis and resolves many more GWs than can be inferred by the manually applied hodograph technique. This technique allows us to unambiguously identify upward- and downward-propagating GWs and their parameters. This technique is applied to unique lidar measurements of temperature and horizontal winds measured in an altitude range of 30 to 70 km.


1998 ◽  
Vol 65 (1) ◽  
pp. 141-149
Author(s):  
J. F. Hall

This paper develops a theory for geometrically nonlinear waves in strings and presents analytical solutions for a traveling kink, generation of a geometric wave with its accompanying P wave, reflection of a kink at a fixed support and at a smooth sliding support, and interaction of a P wave and a kink. Conditions that must be satisfied for linear wave theory to hold are derived. The nonlinear theory is demonstrated by extending an historically important solution of the barrage balloon problem that was obtained during World War II.


Sign in / Sign up

Export Citation Format

Share Document