wave force
Recently Published Documents


TOTAL DOCUMENTS

593
(FIVE YEARS 110)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 243 ◽  
pp. 110245
Author(s):  
Zhihao Zhang ◽  
Jiahuang Tu ◽  
Lei Wu ◽  
Yongkang He ◽  
Haojie Ren ◽  
...  

2021 ◽  
Vol 33 (6) ◽  
pp. 345-356
Author(s):  
Min Su Park

In order to increase the structural stability of existing caisson breakwater, the design and the construction is carried out by installation of new caissons on the back or the front of old caissons. In this study, we use the ANSYS AQWA program to analyze the wave forces acting on individual caisson according to effects of wave structure interaction when new caissons are additionally installed on existing caisson breakwater. Firstly, the wave force characteristics acting on the individual caisson were analyzed for each period (frequency) in the frequency domain. In time domain analysis, the dynamic wave force characteristics were strongly influenced by the distance between caissons on the frequency at which the unusual distribution of wave forces occurs.


2021 ◽  
Vol 33 (6) ◽  
pp. 275-286
Author(s):  
Jae-Sang Jung ◽  
Changhoon Lee

In this study, the analytical solution for diffraction near a vertical detached breakwater was suggested by superposing the solutions of diffraction near a semi-infinite breakwater suggested previously using linear wave theory. The solutions of wave forces acting on front, lee and composed wave forces on both side were also derived. Relative wave amplitude changed periodically in space owing to the interactions between diffracting waves and standing waves on front side and the interactions between diffracting waves from both tips of a detached breakwater on lee side. The wave forces on a vertical detached breakwater were investigated with monochromatic, uni-directional random and multi-directional random waves. The maximum composed wave force considering the forces on front and lee side reached maximum 1.6 times of wave forces which doesn’t consider diffraction. This value is larger than the maximum composed wave force of semi-infinite breakwater considering diffraction, 1.34 times, which was suggested by Jung et al. (2021). The maximum composed wave forces were calculated in the order of monochromatic, uni-directional random and multi-directional random waves in terms of intensity. It was also found that the maximum wave force of obliquely incident waves was sometimes larger than that of normally incident waves. It can be known that the considerations of diffraction, the composed wave force on both front and lee side and incident wave angle are important from this study.


2021 ◽  
Vol 9 (12) ◽  
pp. 1444
Author(s):  
Dan Yu ◽  
Keyi Wang ◽  
Yeqing Jin ◽  
Fankai Kong ◽  
Hailong Chen ◽  
...  

In this work, the hydrodynamic performance of a novel wave energy converter (WEC) configuration which combines a moonpool platform and a javelin floating buoy, called the moonpool–javelin wave energy converter (MJWEC), was studied by semianalytical, computational fluid dynamics (CFD), and experimental methods. The viscous term is added to the potential flow solver to obtain the hydrodynamic coefficients. The wave force, the added mass, the radiation damping, the wave capture, and the energy efficiency of the configuration were assessed, in the frequency and time domains, by a semianalytical method. The CFD method results and the semianalytical results were compared for the time domain by introducing nonlinear power take-off (PTO) damping; additionally, the viscous dissipation coefficients under potential flow could be confirmed. Finally, a 1:10 scale model was physically tested to validate the numerical model and further prove the feasibility of the proposed system.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wanli Yang ◽  
Sijing Li ◽  
Junling Liu ◽  
Wenbo Wu ◽  
Hui Li ◽  
...  

AbstractSolitary wave is often used to simulate tsunami propagating in deep water and breaking solitary wave is often used to simulate tsunami bore propagating in shallow water or on land. The breaking solitary wave force on box-girder, which has been widely used in bridge engineering in coastal areas of China, receives few attentions. This study aims to investigate characteristics and generation mechanism of breaking solitary wave force on box-girder numerically. A numerical wave flume with a 1:20 slope was built firstly, then the solitary wave generation ability, wave deformation and wave breaking on the slope, as well as wave force calculation precision, are validated. The water depth 0.6 m, the slope gradient 1:20 and the distance between slope top and box-girder 2.0 m remain unchanged, while the wave height and clearance changes in different cases. The time histories of horizontal force and vertical force on box-girder can be divided into three and four stages respectively according to their characteristics. The surface of box-girder is decomposed into a series of panels to facilitate exploring tsunami bore force generation mechanism. Results show horizontal force is dominated by static pressure on upstream vertical panels and vertical force is mainly contributed by static pressure on upstream horizontal panels and on panels in the chambers. Tsunami bore overtopping the box-girder deck impacts the top panel vigorously and results in the peak value of negative vertical force.


2021 ◽  
Author(s):  
Peihong Zhao ◽  
Dapeng Sun ◽  
Hao Wu

A Jarlan-type perforated caisson (JTPC) was an important form of structure in offshore and coastal engineering and its wave attenuation performance was greatly affected by μ (the perforated rate). In the present research, a numerical model based on VARANS equations was tested by comparing the simulation results with physical experiments and then adopted to study the effect of a larger range of μ on wave attenuation performance which included both the horizontal wave forces and the reflection coefficients. Conclusions were drawn that the total horizontal wave force and the reflection coefficient both tended to decrease and then increase with increasing μ; when the reflection coefficient reached its minimum value as about μ=0.2, the wave force at the seaward side of the perforated front wall tended to be equal to that at the solid rear wall; the total horizontal wave force reached its minimum value as about μ=0.3.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Meysam Rajabi ◽  
Fahimeh Heydari ◽  
Hassan Ghassemi ◽  
Mohammad Javad Ketabdari ◽  
Hamidreza Ghafari

This article investigated the effect of structural flexibility on a coastal highway bridge subjected to Stokes waves through a three-dimensional numerical model. Wave-bridge interaction modeling was performed by an FSI model with the coupling of finite element and finite volume methods. An experimental model validated the FSI numerical analysis. Eventually, the overall results of hydrodynamic and structural analyses are presented and discussed. The results illustrate that the structural flexibility significantly increases the initial shock of the wave force on the flexible bridge. In contrast, the fixed bridge tolerates the least forces in the initial shock of the wave force. Then, by adding a wedge-shaped part to the bridge structure, an attempt was made to reduce the initial shock of the wave force to the structure. The results showed the wedge-shaped part with an angle of 30° reduces the initial shock of wave forces down to 50% for horizontal force and 43% for vertical force on the flexible structure.


2021 ◽  
Vol 8 (10) ◽  
pp. 307-313
Author(s):  
Oluwafemi John Damilola ◽  
Elakpa Ada Augustine ◽  
Nwaorgu Obioima Godspower

The installation of offshore structures and facilities in the marine environment, usually for the production and transmission of oil, gas exploration, electricity, and other natural resources is referred to as offshore construction. Since offshore structures are subjected to changing threats to the environment year-round. Fatigue behavior prediction noticed on these structures should be considered during the design stage. Fatigue is one of the failure mechanisms of offshore steel structures, and it must be investigated properly during system design. The fatigue analysis of offshore structures under drag wave force, total wave force, total moment about the sea bed, and other variables are reviewed thoroughly. The structure's dynamic response becomes a critical aspect in the whole design process. The fatigue analysis was carried out using MATLAB software, material properties of the offshore structure, and wave spectrum characteristics in this study. This study shows the JONSWAP spectrum and stress concentration analysis prediction. The offshore support structure that is predicted during the design phase will help to keep the stress concentration factor below the fatigue threshold and anticipate safe life design, according to the results of the fatigue study. The fatigue performances of tripod and jacket steel support structures in intermediate waters depth are compared in this project (20-50 m). The North Atlantic Ocean is used as a reference site, with a sea depth of 45 meters. The tripod and jacket support structures will be designed by using current industry standards. Keywords: [Fatigue evaluation, North Atlantic Ocean and Failure].


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhao Mi ◽  
Long Pengzhen ◽  
Wang Piguang ◽  
Zhang Chao ◽  
Du Xiuli

This paper presents an analytical method to investigate the multiple scattering problem within arrays of vertical bottom-mounted circular cylinders subjected to linear incident waves. Based on the Laplace equation and boundary conditions on the seabed and surface, a formulation of a two-dimensional multiple scattering problem is first obtained by using the variable separation method. Furthermore, the analytical solution of the wave forces on multiple circular cylinders is derived, which consists of the incident wave force due to the linear incident wave and the scattered wave forces considering multiple scattering waves. The presented analytical solution is validated by comparing its results with a numerical method, and the result shows that the analytical solution is in good agreement with the numerical one. Finally, the multiple scattering analysis is conducted on arrays of cylinders with different incident wave numbers, distances between cylinders, and quantities.


Sign in / Sign up

Export Citation Format

Share Document