Sulfur isotope fractionation during reduction by different clostridial species

1984 ◽  
Vol 30 (6) ◽  
pp. 841-844 ◽  
Author(s):  
E. J. Laishley ◽  
M. G. Tyler ◽  
H. R. Krouse

Sulfur isotope composition patterns for sulfide evolved from cultures supplemented with 1 mM Na2SO3, suggest that an inducible dissimilatory type [Formula: see text] reduction pathway, as previously found in C. pasteurianum, probably exists in many clostridial species. Data are presented for five additional species which include pathogens and nonpathogens.

1987 ◽  
Vol 33 (5) ◽  
pp. 372-376 ◽  
Author(s):  
K. M. Semple ◽  
D. W. S. Westlake ◽  
H. R. Krouse

Strains of Alteromonas putrefaciens which reduce sulfite and thiosulfate to H2S are readily isolated from oil field fluids in north central Alberta. Data are presented on H2S production during anaerobic sulfite reduction by four strains of A. putrefaciens. Analysis of the sulfur isotope composition (δ34S) of the evolved sulfide shows normal and "inverse" isotope fractionation patterns which are diagnostic of dissimilatory sulfite reduction.


1980 ◽  
Vol 26 (10) ◽  
pp. 1173-1177 ◽  
Author(s):  
R. G. L. McCready ◽  
V. A. Grinenko ◽  
H. R. Krouse

Proteus vulgaris metabolized thiosulfate to H2S. The amount evolved and its sulfur isotope composition identified it solely with sulfane sulfur. In contrast. Salmonella heidelberg sequentially reduced the sulfane sulfur of S2O32− with slight enrichment of the evolved sulfide in 32S and then reduced the sulfonate sulfur of S2O32− with large isotopic selectivities and an inverse isotopic fractionation pattern. The inverse isotope fractionation pattern for the H2S derived from the sulfonate sulfur was almost identical to that observed during the reduction of high concentrations of sulfite by S. heidelberg.


2021 ◽  
Vol 7 (9) ◽  
pp. eabe4641
Author(s):  
Alberto E. Saal ◽  
Erik H. Hauri

Sulfur isotope variations in mantle-derived lavas provide important constraints on the evolution of planetary bodies. Here, we report the first in situ measurements of sulfur isotope ratios dissolved in primitive volcanic glasses and olivine-hosted melt inclusions recovered from the Moon by the Apollo 15 and 17 missions. The new data reveal large variations in 34S/32S ratios, which positively correlates with sulfur and titanium contents within and between the distinct compositional groups of volcanic glasses analyzed. Our results uncover several magmatic events that fractionated the primordial sulfur isotope composition of the Moon: the segregation of the lunar core and the crystallization of the lunar magma ocean, which led to the formation of the heterogeneous sources of the lunar magmatism, followed by magma degassing during generation, transport, and eruption of the lunar lavas. Whether the Earth’s and Moon’s interiors share a common 34S/32S ratio remains a matter of debate.


1982 ◽  
Vol 28 (3) ◽  
pp. 325-333 ◽  
Author(s):  
G. I. Harrison ◽  
E. J. Laishley ◽  
H. R. Krouse

The addition of 1 mM SeO42− significantly affected the physiology and metabolism of Clostridium pasteurianum growing on SO42− in the following ways: (1) the generation time was increased, essentially producing a biphasic growth curve, (2) cells became elongated and chains formed, (3) no H2S was liberated during the stationary phase, (4) assimilatory SO32− reductase activity was decreased, (5) ferredoxin levels decreased by a factor of 4. The effects of 1 mM SeO42− on Clostridium pasteurianum growing on SO32− were comparatively minor.H2S evolution in the stationary phase decreased by a factor of 2 and the δ34S maximum in the inverse isotope effect pattern occurred at a slightly lower percent H2S evolution. The deleterious effects of SeO42− addition were less pronounced than those associated with SeO32− addition. SeO32− but not SeO42− was reduced to elemental selenium by both whole cells and crude extracts.


2018 ◽  
Vol 52 (7) ◽  
pp. 4013-4022 ◽  
Author(s):  
André Pellerin ◽  
Christine B. Wenk ◽  
Itay Halevy ◽  
Boswell A. Wing

2021 ◽  
Author(s):  
E. Idrisova ◽  
T. Karamov ◽  
A. Voropaev ◽  
R. Gabitov ◽  
N. Bogdanovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document