stable isotope fractionation
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 47)

H-INDEX

50
(FIVE YEARS 5)

2021 ◽  
Vol 14 (1) ◽  
pp. 359
Author(s):  
Zhigang Zeng ◽  
Xiaohui Li ◽  
Shuai Chen ◽  
Yuxiang Zhang ◽  
Zuxing Chen ◽  
...  

The studies of iron (Fe), copper (Cu), and zinc (Zn) isotopic compositions in seafloor andesites are helpful in understanding the metal stable isotope fractionation during magma evolution. Here, the Fe, Cu, and Zn isotopic compositions of andesites from the Kueishantao hydrothermal field (KHF) off northeastern Taiwan, west Pacific, have been studied. The majority of δ56Fe values (+0.02‰ to +0.11‰) in the KHF andesites are consistent with those of MORBs (mid-ocean ridge basalts). This suggests that the Fe in the KHF andesites is mainly from a MORB-type mantle. The Fe-Cu-Zn isotopic compositions (δ56Fe +0.22‰, δ65Cu +0.16‰ to +0.64‰, and δ66Zn +0.29‰ to +0.71‰) of the KHF andesites, which are significantly different from those of the MORBs and the continental crust (CC), have a relatively wide range of Cu and Zn isotopic compositions. This is most likely to be a result of the entrainment of the sedimentary carbonate-derived components into an andesitic magma. The recycled altered rocks (higher δ56Fe, lower δ66Zn) could preferentially incorporate isotopically light Fe and heavy Zn into the magma, resulting in relative enrichment of the lighter Fe and heavier Zn isotopes in the andesites. The majority of the δ56Fe values in the KHF andesites are higher than those of the sediments and the local CC and lower than those of the subducted altered rocks, while the reverse is true for δ66Zn, suggesting that the subseafloor sediments and CC materials (lower δ56Fe, higher δ66Zn) contaminating the rising andesitic magma could preferentially incorporate isotopically heavy Fe and light Zn into the magma, resulting in relative enrichment of the heavier Fe and lighter Zn isotopes in the andesites. Thus, the characteristics of the Fe and Zn isotopes in back-arc and island-arc volcanic rocks may also be influenced by the CC and plate subduction components.


2021 ◽  
Vol 923 (1) ◽  
pp. 94
Author(s):  
Ke Zhu ◽  
Frédéric Moynier ◽  
Conel M. O’D. Alexander ◽  
Jemma Davidson ◽  
Devin L. Schrader ◽  
...  

Abstract We investigated the stable isotope fractionation of chromium (Cr) for a panorama of chondrites, including EH and EL enstatite chondrites and their chondrules and different phases (by acid leaching). We observed that chondrites have heterogeneous δ 53Cr values (per mil deviation of the 53Cr/52Cr from the NIST SRM 979 standard), which we suggest reflect different physical conditions in the different chondrite accretion regions. Chondrules from a primitive EH3 chondrite (SAH 97096) possess isotopically heavier Cr relative to their host bulk chondrite, which may be caused by Cr evaporation in a reduced chondrule-forming region of the protoplanetary disk. Enstatite chondrites show a range of bulk δ 53Cr values that likely result from variable mixing of isotopically different sulfide-silicate-metal phases. The bulk silicate Earth (δ 53Cr = –0.12 ± 0.02‰, 2SE) has a lighter Cr stable isotope composition compared to the average δ 53Cr value of enstatite chondrites (–0.05 ± 0.02‰, 2SE, when two samples out of 19 are excluded). If the bulk Earth originally had a Cr isotopic composition that was similar to the average enstatite chondrites, this Cr isotope difference may be caused by evaporation under equilibrium conditions from magma oceans on Earth or its planetesimal building blocks, as previously suggested to explain the magnesium and silicon isotope differences between Earth and enstatite chondrites. Alternatively, chemical differences between Earth and enstatite chondrite can result from thermal processes in the solar nebula and the enstatite chondrite-Earth, which would also have changed the Cr isotopic composition of Earth and enstatite chondrite parent body precursors.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022111
Author(s):  
Zhenyu Han ◽  
Guilin Han

Abstract This paper conducts processing on isotope anharmonic effect with molecular dynamics method and Monte Carlo method based on path integration. It introduces the theoretical calculation method of pressure effect, and finally the nuclear volume effect and its theoretical calculation method, stressing that the nuclear volume effect is an important part of isotopic studies of heavy metals in the future. This paper makes an analysis on the equilibrium fractionation theory based on simple harmonic approximation.


Author(s):  
Daniel S. Grégoire ◽  
Sarah E. Janssen ◽  
Noémie C. Lavoie ◽  
Michael T. Tate ◽  
Alexandre J. Poulain

Mercury (Hg) is a global pollutant and potent neurotoxin that bioaccumulates in food webs as monomethylmercury (MeHg). The production of MeHg is driven by anaerobic and Hg redox cycling pathways such as Hg reduction, which control the availability of Hg to methylators. Anaerobes play an important role in Hg reduction in methylation hotspots, yet their contributions remain underappreciated due to how challenging these pathways are to study in the absence of dedicated genetic targets and low levels of Hg 0 in anoxic environments. In this study we used Hg stable isotope fractionation to explore Hg reduction during anoxygenic photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. We show that cells preferentially reduce lighter Hg isotopes in both metabolisms leading to mass-dependent fractionation, but mass-independent fractionation commonly induced by UV-visible light is absent. Due to variability associated with replicated experiments, we could not discern whether dedicated physiological processes drive Hg reduction during photosynthesis and fermentation. However, we demonstrate that fractionation is affected by the interplay between pathways controlling Hg recruitment, accessibility, and availability alongside metabolic redox reactions. The combined contributions of these processes lead to isotopic enrichment during anoxygenic photosynthesis that is in between the values reported for anaerobic respiratory microbial Hg reduction and abiotic photoreduction. Isotope enrichment during fermentation is closer to what has been observed in aerobic bacteria that reduce Hg through dedicated detoxification pathways. Our work suggests that similar controls likely underpin diverse microbe-mediated Hg transformations that affect Hg’s fate in oxic and anoxic habitats. IMPORTANCE Anaerobic and photosynthetic bacteria that reduce mercury affect mercury delivery to microbes in methylation sites that drive bioaccumulation in food webs. Anaerobic mercury reduction pathways remain underappreciated in the current view of the global mercury cycle because they are challenging to study, bearing no dedicated genetic targets to establish physiological mechanisms. In this study we used stable isotopes to characterize the physiological processes that control mercury reduction during photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. The sensitivity of isotope analyses highlighted the subtle contribution of mercury uptake towards the isotope signature associated with anaerobic mercury reduction. When considered alongside the isotope signatures associated with microbial pathways for which genetic determinants have been identified, our findings underscore the narrow range of isotope enrichment that is characteristic of microbial mercury transformations. This suggests that there exist common atomic-level controls for biological mercury transformations across a broad range of geochemical conditions.


Sign in / Sign up

Export Citation Format

Share Document