Possible ecological implications of the high cell surface hydrophobicity of the fish pathogen Aeromonas salmonicida

1992 ◽  
Vol 38 (10) ◽  
pp. 1048-1052 ◽  
Author(s):  
Øivind Enger ◽  
Berit K. Thorsen

The abundance of the fish pathogenic bacterium Aeromonas salmonicida in different parts of the marine environment was determined in a fish farm stocked with Atlantic salmon (Salmo salar) suffering from furunculosis. By application of highly specific monoclonal antibodies and immunofluorescence techniques, the bacterium was found in high abundances (4.3 × 103 cells/mL) at the air-water interface. Aeromonas salmonicida was also registered in high numbers in the sediments beneath the farm, and in moderate to low numbers in the water column. When samples were collected in the environment outside the fish farm, the number of A. salmonicida was below the detection limit in surface samples, but the bacterium could be detected in the water column in samples collected downstream to the farm. The high number of A. salmonicida found in the lipid-rich air-water interface is discussed, taking into consideration the high hydrophobicity of the cell surface of the bacterium and the physical and ecological conditions in this specific habitat. Key words: immunofluorescence, total bacterial counts, surface microlayer, furunculosis.

Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 527-530 ◽  
Author(s):  
Hilde Lemmer ◽  
George Lind ◽  
Margit Schade ◽  
Birgit Ziegelmayer

Non-filamentous hydrophobic scum bacteria were isolated from scumming wastewater treatment plants (WWTP) by means of adhesion to hydrocarbons. They were characterized with respect to taxonomy, substrate preferences, cell surface hydrophobicity, and emulsification capability. Their role during flotation events is discussed. Rhodococci are selected by hydrolysable substrates and contribute to flotation both by cell surface hydrophobicity and emulsifying activity at long mean cell residence times (MCRT). Saprophytic Acinetobacter strains are able to promote flotation by hydrophobicity and producing emulsifying agents under conditions when hydrophobic substrates are predominant. Hydrogenophaga and Acidovorax species as well as members of the Cytophaga/Flavobacterium group are prone to proliferate under low loading conditions and contribute to flotation mainly by emulsification.


1997 ◽  
Vol 26 (2) ◽  
pp. 319-322 ◽  
Author(s):  
Anna Hillbricht-Ilkowska ◽  
Iwona Jasser ◽  
Iwona Kostrzewska-Szlakowska

Sign in / Sign up

Export Citation Format

Share Document