Dual coenzyme activities of high-Km aldehyde dehydrogenase from rat liver mitochondria

1990 ◽  
Vol 68 (4) ◽  
pp. 751-757 ◽  
Author(s):  
C. Stan Tsai ◽  
D. J. Senior

Various kinetic approaches were carried out to investigate kinetic attributes for the dual coenzyme activities of mitochondrial aldehyde dehydrogenase from rat liver. The enzyme catalyses NAD+- and NADP+-dependent oxidations of ethanal by an ordered bi-bi mechanism with NAD(P)+ as the first reactant bound and NAD(P)H as the last product released. The two coenzymes presumably interact with the kinetically identical site. NAD+ forms the dynamic binary complex with the enzyme, while the enzyme-NAD(P)H complex formation is associated with conformation change(s). A stopped-flow burst of NAD(P)H formation, followed by a slower steady-state turnover, suggests that either the deacylation or the release of NAD(P)H is rate limiting. Although NADP+ is reduced by a faster burst rate, NAD+ is slightly favored as the coenzyme by virtue of its marginally faster turnover rate.Key words: aldehyde dehydrogenase, coenzyme preference.

1965 ◽  
Vol 240 (6) ◽  
pp. 2712-2720
Author(s):  
Zdenek Drahota ◽  
Ernesto Carafoli ◽  
Carlo S. Rossi ◽  
Robert L. Gamble ◽  
Albert L. Lehninger

1990 ◽  
Vol 1018 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Siro Luvisetto ◽  
Carmen Cola ◽  
Thomas E. Conover ◽  
Giovanni Felice Azzone

2003 ◽  
Vol 3 (S2) ◽  
Author(s):  
Alexandra Hofer ◽  
Alexander Kollau ◽  
Wing Ming Keung ◽  
Kurt Schmidt ◽  
Bernd Mayer

1980 ◽  
Vol 188 (3) ◽  
pp. 749-755 ◽  
Author(s):  
A P Dawson ◽  
D V Fulton

1. Nupercaine inhibits the Ca2+ efflux from rat liver mitochondria observed in the presence of Ruthenium Red, 50% inhibition being obtained at 80 microM-Nupercaine. 2. Neither the Ruthenium Red-stimulated efflux nor its inhibition by Nupercaine can be directly attributed to effects on mitochondrial stability. 3. Nupercaine perturbs the steady-state external Ca2+ concentration in the absence of Ruthenium Red to an extent that is explicable in terms of the inhibition of Ca2+ efflux. 4. Various factors that are likely to be involved in determining steady-state extra-mitochondrial Ca2+ concentrations are discussed.


Sign in / Sign up

Export Citation Format

Share Document