aldehyde dehydrogenase
Recently Published Documents


TOTAL DOCUMENTS

3171
(FIVE YEARS 310)

H-INDEX

111
(FIVE YEARS 7)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 480
Author(s):  
Ziad Omran

Aldehyde dehydrogenase-1a1 (ALDH1a1), the enzyme responsible for the oxidation of retinal into retinoic acid, represents a key therapeutic target for the treatment of debilitating disorders such as cancer, obesity, and inflammation. Drugs that can inhibit ALDH1a1 include disulfiram, an FDA-approved drug to treat chronic alcoholism. Disulfiram, by carbamylation of the catalytic cysteines, irreversibly inhibits ALDH1a1 and ALDH2. The latter is the isozyme responsible for important physiological processes such as the second stage of alcohol metabolism. Given the fact that ALDH1a1 has a larger substrate tunnel than that in ALDH2, replacing disulfiram ethyl groups with larger motifs will yield selective ALDH1a1 inhibitors. We report herein the synthesis of new inhibitors of ALDH1a1 where (hetero)aromatic rings were introduced into the structure of disulfiram. Most of the developed compounds retained the anti-ALDH1a1 activity of disulfiram; however, they were completely devoid of inhibitory activity against ALDH2.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yaroslav Tsybovsky ◽  
Valentin Sereda ◽  
Marcin Golczak ◽  
Natalia I. Krupenko ◽  
Sergey A. Krupenko

AbstractPutative tumor suppressor ALDH1L1, the product of natural fusion of three unrelated genes, regulates folate metabolism by catalyzing NADP+-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Cryo-EM structures of tetrameric rat ALDH1L1 revealed the architecture and functional domain interactions of this complex enzyme. Highly mobile N-terminal domains, which remove formyl from 10-formyltetrahydrofolate, undergo multiple transient inter-domain interactions. The C-terminal aldehyde dehydrogenase domains, which convert formyl to CO2, form unusually large interfaces with the intermediate domains, homologs of acyl/peptidyl carrier proteins (A/PCPs), which transfer the formyl group between the catalytic domains. The 4′-phosphopantetheine arm of the intermediate domain is fully extended and reaches deep into the catalytic pocket of the C-terminal domain. Remarkably, the tetrameric state of ALDH1L1 is indispensable for catalysis because the intermediate domain transfers formyl between the catalytic domains of different protomers. These findings emphasize the versatility of A/PCPs in complex, highly dynamic enzymatic systems.


2022 ◽  
Vol 17 (7) ◽  
pp. 1505
Author(s):  
Riyi Shi ◽  
SethA Herr ◽  
Liangqin Shi ◽  
Thomas Gianaris ◽  
Yucheng Jiao ◽  
...  

2022 ◽  
Vol 23 (1) ◽  
pp. 477
Author(s):  
Han-Mei Du ◽  
Chan Liu ◽  
Xin-Wu Jin ◽  
Cheng-Feng Du ◽  
Yan Yu ◽  
...  

Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.


Metabolomics ◽  
2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Margaret L. Dahn ◽  
Hayley R. Walsh ◽  
Cheryl A. Dean ◽  
Michael A. Giacomantonio ◽  
Wasundara Fernando ◽  
...  

Abstract Introduction Aldehyde dehydrogenase 1A3 (ALDH1A3) is a cancer stem cell (CSC) marker and in breast cancer it is associated with triple-negative/basal-like subtypes and aggressive disease. Studies on the mechanisms of ALDH1A3 in cancer have primarily focused on gene expression changes induced by the enzyme; however, its effects on metabolism have thus far been unstudied and may reveal novel mechanisms of pathogenesis. Objective Determine how ALDH1A3 alters the metabolite profile in breast cancer cells and assess potential impacts. Method Triple-negative MDA-MB-231 tumors and cells with manipulated ALDH1A3 levels were assessed by HPLC–MS metabolomics and metabolite data was integrated with transcriptome data. Mice harboring MDA-MB-231 tumors with or without altered ALDH1A3 expression were treated with γ-aminobutyric acid (GABA) or placebo. Effects on tumor growth, and lungs and brain metastasis were quantified by staining of fixed thin sections and quantitative PCR. Breast cancer patient datasets from TCGA, METABRIC and GEO were used to assess the co-expression of GABA pathway genes with ALDH1A3. Results Integrated metabolomic and transcriptome data identified GABA metabolism as a primary dysregulated pathway in ALDH1A3 expressing breast tumors. Both ALDH1A3 and GABA treatment enhanced metastasis. Patient dataset analyses revealed expression association between ALDH1A3 and GABA pathway genes and corresponding increased risk of metastasis. Conclusion This study revealed a novel pathway affected by ALDH1A3, GABA metabolism. Like ALDH1A3 expression, GABA treatment promotes metastasis. Given the clinical use of GABA mimics to relieve chemotherapy-induced peripheral nerve pain, further study of the effects of GABA in breast cancer progression is warranted.


Medicina ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 25
Author(s):  
Blanka Wolszczak-Biedrzycka ◽  
Elżbieta Zasimowicz-Majewska ◽  
Anna Bieńkowska ◽  
Grzegorz Biedrzycki ◽  
Justyna Dorf ◽  
...  

Background and objectives: The aim of the current study was to assess the use of determinations of total alcohol dehydrogenase and the activity of its isoenzymes as well as aldehyde dehydrogenase in the serum of patients with alcohol liver disease. Materials and Methods: The testing was performed on the serum of 38 patients with alcoholic fatty liver (26 males and 12 females aged 31–75). The total activity of ADH was determined by the colorimetric method. The activity of ADH I and ADH II, as well as ALDH, was determined by the spectrofluorometric method using fluorogenic specific substrates. The activity of isoenzymes of other classes was determined by spectrophotometric methods using substrates. Results: A statistically significantly higher ADH I activity was noted in the serum of patients with alcoholic fatty liver (4.45 mIU/L) compared to the control group (2.04 mIU/L). A statistically significant increase in the activity was also noted for the class II alcohol dehydrogenase isoenzyme (29.21 mIU/L, control group: 15.56 mIU/L) and the total ADH (1.41 IU/L, control group: 0.63 IU/L). Conclusions: The obtained results imply the diagnostic usefulness of the determination of AHD total, ADH I, and ADH II activity in the serum of patients with alcoholic fatty liver.


Sign in / Sign up

Export Citation Format

Share Document