Cross-activation: overriding cAMP/cGMP selectivities of protein kinases in tissues

1992 ◽  
Vol 70 (12) ◽  
pp. 1283-1289 ◽  
Author(s):  
Hang Jiang ◽  
John B. Shabb ◽  
Jackie D. Corbin

cAMP- and cGMP-dependent protein kinases are homologous proteins and are predicted to exhibit very similar three-dimensional structures. Their cyclic nucleotide binding domains share a high degree of amino acid sequence identity. cAMP- and cGMP-dependent protein kinases are activated relatively specifically by cAMP and cGMP, respectively; and a single alanine–threonine difference between cAMP- and cGMP-binding domains partially accounts for this specificity. Thus, it would be expected that cAMP and cGMP mediate separate physiological effects. However, owing in part to the lack of absolute specificity of either enzyme and to the relatively high level of cAMP or cGMP in certain tissues, it is also possible that either cyclic nucleotide could cross-activate the other kinase. Increases in either cAMP or cGMP cause pig coronary artery relaxation. However, only cGMP-dependent protein kinase specific cyclic nucleotide analogues are very effective in causing relaxation, and cAMP elevation in arteries treated with isoproterenol or forskolin activates cGMP-dependent protein kinase, in addition to cAMP-dependent protein kinase. Conversely, increases in either cAMP or cGMP cause Cl− secretion in T-84 colon carcinoma cells, and the cGMP level in T-84 cells can be elevated sufficiently by bacterial enterotoxin to activate cAMP-dependent protein kinase. These results imply specific regulation of cAMP- and cGMP-dependent protein kinases by the respective cyclic nucleotides, but either cyclic nucleotide is able to cross-activate the other kinase in certain tissues.Key words: cGMP, cAMP, smooth muscle relaxation, protein phosphorylation.

1993 ◽  
Vol 106 (4) ◽  
pp. 1369-1376 ◽  
Author(s):  
C.E. Walczak ◽  
D.L. Nelson

Paramecium dyneins were tested as substrates for phosphorylation by cAMP-dependent protein kinase, cGMP-dependent protein kinase, and two Ca(2+)-dependent protein kinases that were partially purified from Paramecium extracts. Only cAMP-dependent protein kinase caused significant phosphorylation. The major phosphorylated species was a 29 kDa protein that was present in both 22 S and 12 S dyneins; its phosphate-accepting activity peaked with 22 S dynein. In vitro phosphorylation was maximal at five minutes, then decreased. This decrease in phosphorylation was inhibited by the addition of vanadate or NaF. The 29 kDa protein was not phosphorylated by a heterologous cAMP-dependent protein kinase, the bovine catalytic subunit. Phosphorylation of dynein did not change its ATPase activity. In sucrose gradient fractions from the last step of dynein purification, phosphorylation by an endogenous kinase occurred. This phosphorylation could not be attributed to the small amounts of cAMP- and cGMP-dependent protein kinases known to be present, nor was it Ca(2+)-dependent. This previously uncharacterized ciliary protein kinase used casein as an in vitro substrate.


1996 ◽  
Vol 271 (29) ◽  
pp. 17570-17575 ◽  
Author(s):  
Robin B. Reed ◽  
Mårten Sandberg ◽  
Tore Jahnsen ◽  
Suzanne M. Lohmann ◽  
Sharron H. Francis ◽  
...  

2015 ◽  
Vol 16 (S1) ◽  
Author(s):  
James C. Campbell ◽  
Kevin Y. Li ◽  
Jeong Joo Kim ◽  
Gilbert Huang ◽  
Albert S. Reger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document