kinase signaling
Recently Published Documents


TOTAL DOCUMENTS

2599
(FIVE YEARS 289)

H-INDEX

134
(FIVE YEARS 11)

2022 ◽  
pp. molcanres.MCR-21-0275-E.2021
Author(s):  
Anurima Majumder ◽  
Sina Hosseinian ◽  
Mia Stroud ◽  
Emma Adhikari ◽  
James J Saller ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3602
Author(s):  
Yuhei Nishimura ◽  
Daishi Yamakawa ◽  
Takashi Shiromizu ◽  
Masaki Inagaki

Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1829
Author(s):  
Wen-Yang Hu ◽  
Parivash Afradiasbagharani ◽  
Ranli Lu ◽  
Lifeng Liu ◽  
Lynn A. Birch ◽  
...  

The molecular mechanisms underlying prostate development can provide clues for prostate cancer research. It has been demonstrated that MEK/ERK signaling downstream of androgen-targeted FGF10 signaling directly induces prostatic branching during development, while Rho/Rho-kinase can regulate prostate cell proliferation. MEK/ERK and Rho/Rho kinase regulate myosin light chain kinase (MLCK), and MLCK regulates myosin light chain phosphorylation (MLC-P), which is critical for cell fate, including cell proliferation, differentiation, and apoptosis. However, the roles and crosstalk of the MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis have not been examined. In the present study, we used numerical and image analysis to characterize lobe-specific rat prostatic branching during postnatal organ culture and investigated the roles of FGF10-MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis. Prostates exhibited distinctive lobe-specific growth and branching patterns in the ventral (VP) and lateral (LP) lobes, while exogenous FGF10 treatment shifted LP branching towards a VP branching pattern. Treatment with inhibitors of MEK1/2, Rho, Rho kinase, or MLCK significantly inhibited VP growth and blocked branching morphogenesis, further supporting critical roles for MEK/ERK and Rho/Rho kinase signaling pathways in prostatic growth and branching during development. We propose that MLCK-regulated MLC-P may be a central downstream target of both signaling pathways in regulating prostate morphogenesis.


2021 ◽  
Vol 522 ◽  
pp. 119-128
Author(s):  
Keiko Tanimura ◽  
Tadaaki Yamada ◽  
Mano Horinaka ◽  
Yuki Katayama ◽  
Sarina Fukui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document