sucrose gradient
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 16)

H-INDEX

43
(FIVE YEARS 1)

2021 ◽  
Vol 2 (4) ◽  
pp. 100825
Author(s):  
Kiran Challa ◽  
Jan Seebacher ◽  
Susan M. Gasser

2021 ◽  
Author(s):  
RB Gorodnichev ◽  
MA Kornienko ◽  
NS Kuptsov ◽  
AD Efimov ◽  
VI Bogdan ◽  
...  

Phage therapy is a promising method of treating antibiotic-resistant infections. To obtain a safe therapeutic formulation, bacterial cell components, including endotoxins, must be removed from the phage lysate. This study was aimed at comparing the efficacy of purification methods for phage lysates intended for therapeutic use. Phages vB_KpnM_Seu621 (Myoviridae) and vB_KpnP_Dlv622 (Autographiviridae) were grown using the KP9068 strain of Klebsiella pneumoniae as a host. The obtained lysates were purified using phage precipitation with polyethylene glycol, CsCl density gradient ultracentrifugation, sucrose density gradient ultracentrifugation, precipitation with 100 kDa centrifugal filter units, and phage concentration on 0.22 µm cellulose filters in the presence of MgSO4. Endotoxin concentrations were determined by LAL testing. The obtained lysates contained 1.25 × 1012 ± 7.46 × 1010 and 2.25 × 1012 ± 1.34 × 1011 PFU/ml of vB_KpnM_Seu621 and vB_KpnP_Dlv622, respectively, and had endotoxin concentrations of 3,806,056 ± 429,410 and 189,456 ± 12,406 EU/ml, respectively. CsCl gradient ultracentrifugation was found to be the optimal conventional purification method in terms of reducing endotoxin concentrations and maintaining phage titers (303 ± 20 — 313 ± 35 EU/ml, 1.5–2.75 × 1012 ± 1.71 × 1011 PFU/ml). Sucrose gradient ultracentrifugation and filtration in the presence of MgSO4 were found to be the optimal non-traditional purification methods. A method for phage lysate purification should be selected for each phage preparation individually. Sucrose gradient ultracentrifugation and filtration in the presence of MgSO4 hold promise as purification methods that can produce phage preparations suitable for intravenous administration.


2021 ◽  
Author(s):  
Ming-Hao Li ◽  
Daniel P. Raleigh ◽  
Erwin London

The natural asymmetry of cellular membranes influences their properties. In recent years, methodologies for preparing asymmetric vesicles have been developed that rely on the methyl-α-cyclodextrin catalyzed exchange of lipids between donor lipid multilamellar vesicles and acceptor lipid unilamellar vesicles, and the subsequent separation of the, now asymmetric, acceptor vesicles from the donors. Isolation is accomplished by pre-loading acceptor vesicles with a high concentration of sucrose, typically 25% (w/w), and separating from donor and cyclodextrin by sucrose gradient centrifugation. We found that when the asymmetric vesicles were dispersed under hypotonic conditions using physiological salt solutions, there was enhanced leakage of an entrapped probe, 6-carboxyfluorescein. Studies with symmetric vesicles showed this was due to osmotic pressure and was specific to hypotonic solutions. Inclusion of cholesterol partly reduced leakage but did not completely eliminate it. To avoid having to use hypotonic conditions or to suspend vesicles at non-physiological solute concentrations to minimize leakage, a method for preparing asymmetric vesicles using acceptor vesicle-entrapped CsCl at a physiological salt concentration (100 mM) was developed. Asymmetric vesicles prepared with the entrapped CsCl protocol were highly resistant to 6-carboxyfluorescein.


2021 ◽  
Author(s):  
Ying Hsu ◽  
Seongjin Seo ◽  
Val C Sheffield

Abstract The BBSome is a protein complex consisting of BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9 and BBS18 that associates with intraflagellar transport complexes and specializes in ciliary trafficking. In primary cilia, ciliary entry requires the fully assembled BBSome as well as the small GTPase, ARL6 (BBS3). Retinal photoreceptors possess specialized cilia. In light of key structural and functional differences between primary and specialized cilia, we examined the principles of BBSome recruitment to photoreceptor cilia. We performed sucrose gradient fractionation using retinal lysates of Bbs2−/−, Bbs7−/−, Bbs8−/− and Bbs3−/− mice to determine the status of BBSome assembly, then determined localization of BBSome components using immunohistochemistry. Surprisingly, we found that a subcomplex of the BBSome containing at least BBS1, BBS5, BBS8 and BBS9 is recruited to cilia in the absence of BBS2 or BBS7. In contrast, a BBSome subcomplex consisting of BBS1, BBS2, BBS5, BBS7 and BBS9 is found in Bbs8−/− retinas and is denied ciliary entry in photoreceptor cells. In addition, the BBSome remains fully assembled in Bbs3−/− retinas and can be recruited to photoreceptor cilia in the absence of BBS3. We compared phenotypic severity of their retinal degeneration phenotypes. These findings demonstrate that unlike primary cilia, photoreceptor cilia admit a partially assembled BBSome meeting specific requirements. In addition, the recruitment of the BBSome to photoreceptor cilia does not require BBS3. These findings indicate that the ciliary entry of the BBSome is subjected to cell-specific regulation, particularly in cells with highly adapted forms of cilia such as photoreceptors.


2020 ◽  
Author(s):  
Manon Lang ◽  
Evelyne Krin ◽  
Chloé Korlowski ◽  
Odile Sismeiro ◽  
Hugo Varet ◽  
...  

AbstractIndole is a small molecule derived from tryptophan degradation and proposed to be involved in bacterial signaling. We find that indole secretion is induced by sublethal tobramycin concentrations and increases persistence to aminoglycosides in V. cholerae. Indole transcriptomics showed strongly increased expression of raiA, a ribosome associated factor. Deletion of raiA abolishes the appearance of indole dependent persisters to aminoglycosides, while its overexpression leads to 100-fold increase of persisters, and a reduction in lag phase, evocative of increased active 70S ribosome content, which was confirmed by sucrose gradient analysis. We propose that, under stress conditions, inactive 70S ribosomes are associated with RaiA to be stored and rapidly reactivated when growth conditions become favorable again, in a mechanism different than ribosome hibernation. Our results point to an active process of persistent cell formation, through ribosome protection during translational stress and relief upon antibiotic removal. Translation is a universal process, and these results could help elucidate a mechanism of persistence formation in a controlled, thus inducible way.


2020 ◽  
Vol 21 (21) ◽  
pp. 8122
Author(s):  
Alexander A. Dayal ◽  
Natalia V. Medvedeva ◽  
Tatiana M. Nekrasova ◽  
Sergey D. Duhalin ◽  
Alexey K. Surin ◽  
...  

Desmin intermediate filaments (IFs) play an important role in maintaining the structural and functional integrity of muscle cells. They connect contractile myofibrils to plasma membrane, nuclei, and mitochondria. Disturbance of their network due to desmin mutations or deficiency leads to an infringement of myofibril organization and to a deterioration of mitochondrial distribution, morphology, and functions. The nature of the interaction of desmin IFs with mitochondria is not clear. To elucidate the possibility that desmin can directly bind to mitochondria, we have undertaken the study of their interaction in vitro. Using desmin mutant Des(Y122L) that forms unit-length filaments (ULFs) but is incapable of forming long filaments and, therefore, could be effectively separated from mitochondria by centrifugation through sucrose gradient, we probed the interaction of recombinant human desmin with mitochondria isolated from rat liver. Our data show that desmin can directly bind to mitochondria, and this binding depends on its N-terminal domain. We have found that mitochondrial cysteine protease can disrupt this interaction by cleavage of desmin at its N-terminus.


2020 ◽  
Vol 108 (1) ◽  
pp. 169-176
Author(s):  
Farnam Ajamian ◽  
Ramses Ilarraza ◽  
Yingqi Wu ◽  
Katherine Morris ◽  
Solomon O. Odemuyiwa ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document