THE WAVELENGTH DISPLACEMENTS OF SOME INFRARED LINES BETWEEN LIMB AND CENTER OF THE SUN. II

1960 ◽  
Vol 38 (6) ◽  
pp. 853-865 ◽  
Author(s):  
Luise Herzberg

The differences between the wavelengths at the solar limb and at the center of the disk have been measured for lines of Fe I, Si I, and Ca II in the λ8500 Å and λ8900 Å regions of the spectrum. The values of the limb–center displacements (in km/sec) of the Fe I lines in the two wavelength regions studied are found to be the same as those obtained by M. G. Adam for neutral metal lines at λ6100 Å. The limb–center displacements of the Si I lines are similar in magnitude and in the same direction as those of Fe I. Although the data are insufficient to decide the question as to term dependence of the solar wavelength shifts of Si I, any relation to the shifts observed in a laboratory light source can be excluded. For the Ca II lines at λ8500 Å and λ8900 Å, corresponding to two different transitions, the limb–center displacements differ from each other both in magnitude and in direction. The limb–center displacements of the λ8900 Å Ca II lines are smaller than those of the Fe I lines, while those of the λ8500 Å Ca II lines are significantly larger and in direction opposite to those observed for lines of Fe I.Where possible, comparison has been made between the wavelengths observed at limb and center of the disk and the solar wavelengths predicted by General Relativity Theory. In all cases the wavelengths at the limb were found to be closer to the predicted values than the wavelengths measured at the center of the disk. While for the lines of Fe I the predicted solar wavelengths and those observed near the limb (r/R = 0.982) are in good agreement, the wavelengths close to the solar limb of the λ8500 Å Ca II lines are found to be significantly larger than those predicted by relativity theory.

2014 ◽  
Vol 23 (08) ◽  
pp. 1450068 ◽  
Author(s):  
O. Goldoni ◽  
M. F. A. da Silva ◽  
G. Pinheiro ◽  
R. Chan

In this paper, we have studied nonstationary radiative spherically symmetric spacetime, in general covariant theory (U(1) extension) of Hořava–Lifshitz (HL) gravity without the projectability condition and in the infrared (IR) limit. The Newtonian prepotential φ was assumed null. We have shown that there is not the analogue of the Vaidya's solution in the Hořava–Lifshitz Theory (HLT), as we know in the General Relativity Theory (GRT). Therefore, we conclude that the gauge field A should interact with the null radiation field of the Vaidya's spacetime in the HLT.


In this contribution, my purpose is to study a new mathematical instrument introduced by me in 1958-9: the tensor and spinor propagators. These propagators are extensions of the scalar propagator of Jordan-Pauli which plays an important part in quantum-field theory. It is possible to construct, with these propagators, commutators and anticommutators for the various free fields, in the framework of general relativity theory (see Lichnerowicz 1959 a, b, c , 1960, 1961 a, b, c ; and for an independent introduction of propagators DeWitt & Brehme 1960).


2020 ◽  
Author(s):  
Mark Zilberman

The hypothetical “Dimming Effect” describes the change of the number of photons arriving from a moving light source per unit of time. In non-relativistic systems, the “Dimming effect” may occur due to the growing distance of light sources moving away from the receiver. This means that due to the growing distance, the photons continuously require more time to reach the receiver, which reduces the number of received photons per time unit compared to the number of emitted photons. Understandably, the proposed “Dimming effect” must be tested (confirmed or rejected) through observations. a. This article provides the formula for the calculation of “Dimming effect” values using the redshift parameter Z widely used in astronomy. b. The “Dimming effect” can possibly be detected utilizing the orbital movement of the Earth around the Sun. In accordance to the “Dimming effect”, observers on Earth will view 1.0001 more photons per time unit emitted by stars located near the ecliptic plane in the direction of the Earth orbiting the Sun. And, in contrast, observers will view only 0.9999 photons per time unit emitted by stars located near the ecliptic plane in the direction opposite to the Earth orbiting the Sun. Calculating precise measurements of the same stars within a 6-month period can possibly detect this difference. These changes in brightness are not only for specific stars, as the change in brightness takes place for all stars near the ecliptic in the direction of the Earth’s orbit around the Sun and in the opposite direction. c. The “Dimming effect” can possibly be detected in a physics laboratory using a moving light source (or mirror) and photon counters located in the direction of travel and in the opposite direction. d. In theory, Dilation of time can also be used for testing the existence of the “Dimming effect.” However, in experiments on Earth this effect appears in only the 14th digit after the decimal point and testing does not appear to be feasible. e. Why is it important to test the “Dimming effect?” If confirmed, it would allow astronomers to adjust values of "Standard Candles" used in astronomy. Since “Standard Candles” are critical in various cosmological models, the “Dimming effect” can correct models and/or reveal and support new models. If it is proved that the “Dimming effect” does not exist, it will mean that the number of photons arriving per unit of time does not depend on the speed of the light source and observer, which is not so apparent.


1983 ◽  
Vol 51 (1) ◽  
pp. 92-93 ◽  
Author(s):  
H. A. Buchdahl ◽  
Daniel M. Greenberger

Author(s):  
Jin Tong Wang ◽  
Jiangdi Fan ◽  
Aaron X. Kan

It has been well known that there is a redshift of photon frequency due to the gravitational potential. Scott et al. [Can. J. Phys. 44 (1966) 1639, https://doi.org/10.1139/p66-137 ] pointed out that general relativity theory predicts the gravitational redshift. However, using the quantum mechanics theory related to the photon Hamiltonian and photon Schrodinger equation, we calculate the redshift due to the gravitational potential. The result is exactly the same as that from the general relativity theory.


Sign in / Sign up

Export Citation Format

Share Document