STRUCTURE IN THE MASS–YIELD DISTRIBUTION FOR U235 FISSION

1962 ◽  
Vol 40 (8) ◽  
pp. 943-953 ◽  
Author(s):  
H. Farrar ◽  
R. H. Tomlinson

Recent measurements of the cumulative yields of essentially all the mass chains in the thermal neutron fission of U235 have enabled a detailed examination of the fine structure in the mass–yield curve. It has been found that most of the structure results from a slowly changing neutron yield as a function of the mass of the primary fission fragments.

1955 ◽  
Vol 33 (11) ◽  
pp. 693-706 ◽  
Author(s):  
J. A. Petruska ◽  
H. G. Thode ◽  
R. H. Tomlinson

Twenty-eight absolute fission yields totalling 78% of the heavy and 16% of the light fragments have been determined using the mass spectrometer and isotope dilution techniques. The precision of the values obtained is in most cases better than 2% and the absolute accuracy is estimated to be about 3%. Fine structure in the mass–yield curve is discussed in terms of structural preference and various chain branching mechanisms.


1962 ◽  
Vol 40 (8) ◽  
pp. 1017-1026 ◽  
Author(s):  
H. Farrar ◽  
H. R. Fickel ◽  
R. H. Tomlinson

A mass spectrometric study of the relative yields of the strontium, yttrium, zirconium, and molybdenum isotopes formed in the thermal neutron fission of U235 has made possible a detailed examination of structure of the light mass region of the mass–yield curve. The relative yields of this work have been normalized to 5.77% for Sr90, and when literature and extrapolated values are taken for the remaining chains, the fission yields total 100.8%.


1964 ◽  
Vol 42 (11) ◽  
pp. 2063-2079 ◽  
Author(s):  
H. Farrar ◽  
W. B. Clarke ◽  
H. G. Thode ◽  
R. H. Tomlinson

The relative yields of isotopes of xenon, cesium, barium, cerium, neodymium, and samarium formed by the thermal neutron fission of 241Pu have been obtained by mass spectrometric methods. The relative yields of the elements were normalized by means of the isotope dilution and isobaric techniques, and absolute cumulative yields were determined by summing the relative yields to 100%. The curve obtained for 241Pu is compared with other mass–yield curves. The general shape of this mass–yield curve is similar to that for 239Pu; yet the fine structure shows greater similarity to that for 235U thermal-neutron fission.


1978 ◽  
Vol 56 (10) ◽  
pp. 1340-1352 ◽  
Author(s):  
Masako Shima ◽  
H. G. Thode ◽  
R. H. Tomlinson

The relative cumulative yields of nine stable and long-lived isotopes of ruthenium and palladium (masses 101 to 110) produced in the thermal neutron fission of 233U and in the thermal and epicadmium neutron fission of 235U and 239Pu have been measured using a solid source mass spectrometer and isotope dilution techniques. Absolute yields of these isotopes for the thermal neutron fission of 233U, 235U, and 239Pu are obtained using normalization procedures. These yields provide the first experimentally determined yields of the palladium masses 105, 106, 107, 108, and 110.In the thermal fission of 233U and 235U the ruthenium isotope yields obtained are in general agreement with previously determined values, although discrepancies exist of the order of 10% at masses 103, 104, and 106 for thermal fission of 235U.A plot of the ruthenium and palladium isotope mass yields together with the previously determined yields for the cadmium and tin isotopes indicate a significant depression in the mass yield curve at masses 111 and 114 for 233U and 235U thermal fission, respectively. In the 235U epicadmium fission, yields at even mass numbers are relatively higher than those at odd numbers, resulting in a zigzag yield curve in the 101 to 110 mass region.


1969 ◽  
Vol 47 (3) ◽  
pp. 275-278 ◽  
Author(s):  
K. S. Thind ◽  
R. H. Tomlinson

It is predicted that there should be fine structure in the cumulative mass yield curve in the symmetric mass region where major discontinuities in the neutron emission vs. mass curve exist. In the case of low-energy neutron fission of 238U, this fine structure takes the form of a pronounced depression in the region of mass 125. Under similar conditions for 232Th, the fine structure may take the form of depressions in the region of mass 110 and 125 so that the cumulative mass yield curve appears to have a central peak.


1957 ◽  
Vol 35 (8) ◽  
pp. 969-979 ◽  
Author(s):  
T. J. Kennett ◽  
H. G. Thode

The relative fission yields for mass chains ending in stable krypton and xenon isotopes have been measured for the fast neutron-induced fission of Th232. Isotope dilution techniques were used to determine the krypton/xenon ratio to assist in obtaining the absolute fission yields for these mass chains. The absolute yields were determined by the use of two methods, both giving results which were in excellent agreement. The fine structure observed for the Th232 mass–yield curve is compared with that of heavier fissile nuclides.


1954 ◽  
Vol 32 (8) ◽  
pp. 522-529 ◽  
Author(s):  
W. Fleming ◽  
R. H. Tomlinson ◽  
H. G. Thode

The fission yields of Xe131, Xe132, Xe134, Xe136, Cs133, Cs135, Cs137, Kr83, Kr84, 10.27 year Kr85, and Kr86 in the neutron fission of U233 have been determined by mass spectrometer methods. The very pronounced fine structure in the mass yield curve in the mass range 131 to 137 found in U235 fission does not occur in the fission of U233. This disappearance of fine structure would not have been predicted by any of the mechanisms which have been suggested to explain the fine structure in U235 fission. The fission yield of the 10.27 year isomer of Kr85 relative to the other krypton isotopes is considerably higher in U233 fission than in U235 fission, indicating some fine structure in this mass range which may be related to the closed shell of 50 neutrons.


1956 ◽  
Vol 104 (4) ◽  
pp. 1046-1053 ◽  
Author(s):  
Bernard L. Cohen ◽  
Anna Foner Cohen ◽  
Charles D. Coley

1962 ◽  
Vol 40 (11) ◽  
pp. 1626-1663 ◽  
Author(s):  
J. C. D. Milton ◽  
J. S. Fraser

The prompt mass and kinetic energy distributions resulting from the thermal neutron fission of U233, U235, and Pu239 have been reinvestigated using time-of-flight methods to measure simultaneously the velocities of the fragment pairs. A new feature shown by the present work is the existence of fine structure in the prompt mass yields. This fine structure is most pronounced at high total kinetic energies where the fragments have little excitation energy and may be associated with irregularities in the energy release as a function of mass. The fine structure is most noticeable in U235 and least in Pu239; the fragments of U235 have the lowest average excitation and those of Pu239, the highest. Another feature, which is confirmed by this work, is the large drop in total kinetic energy when the fragments are near symmetry. This decrease is about 35 Mev and is consistent either with a picture in which the nucleus with 50 protons is especially preferred or with one in which fragments at symmetric fission have an abnormally high excitation energy and a consequent large number of neutrons. The mean kinetic energies for thermal neutron fission of U233, U235, and Pu239 were found to be 167.6, 168.3, and 175.0 Mev with an error of ± 1.7 Mev.


1974 ◽  
Vol 36 (5) ◽  
pp. 965-969 ◽  
Author(s):  
I. Fujiwara ◽  
H. Nakahara ◽  
H. Okamoto ◽  
N. Imanishi ◽  
T. Nishi

Sign in / Sign up

Export Citation Format

Share Document