neutron yield
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 52)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Vol 92 (1) ◽  
pp. 32
Author(s):  
О.М. Скрекель ◽  
Н.Н. Бахарев ◽  
В.И. Варфоломеев ◽  
В.К. Гусев ◽  
М.В. Ильясова ◽  
...  

The paper discusses the results of the calibration of two corona neutron counters used to measure the total neutron yield from the plasma of the Globus-M2 tokamak. The calibration was carried out in the experimental hall of the Globus-M2 facility using an AmBe source. During the calibration, the source moved uniformly around the central solenoid in the equatorial plane of the vacuum chamber, and one of the detectors was gradually moved away from the tokamak along a line with a constant toroidal angle. The values of the calibration coefficient obtained depending on the distance of the detector from the tokamak axis are presented. The calibration technique made it possible to separate in the detector signal the contributions from the direct neutron flux emitted by the plasma and from the flux of neutrons scattered on the elements of the experimental hall.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Tien Tran Minh ◽  
Dung Tran Quoc

In this paper, the accelerator-driven subcritical reactor (ADSR) is simulated based on structure of the TRIGA-Mark II reactor. A proton beam is accelerated and interacts on the lead target. Two cases of using lead are considered here: firstly, solid lead is referred to as spallation neutron target and water as the coolant; secondly, molten lead is considered both as a target and as a coolant. The proton beam in the energy range from 115 MeV to 2000 MeV interacts with the lead to create neutrons. The neutron parameters as neutron yield Yn/p, neutron multiplication factor k, the radial and axial distributions of the neutron flux in the core have been calculated by using MCNPX program. The results show that the neutron yield increases as the energies of the proton beam increases. When using the lead target, the differences between the neutron yield are from 4.2% to 14.2% depending on the energies of the proton beam. The proportion of uranium in the mixtures should be around 24% to produce an effective neutron multiplier factor greater than 0.9. The neutron fluxes are much higher than the same calculations for the TRIGA-Mark II reactor model using tungsten target and light water coolant.


2021 ◽  
Vol 16 (0) ◽  
pp. 1405104-1405104
Author(s):  
Takeo NISHITANI ◽  
Sachiko YOSHIHASHI ◽  
Kohki KUMAGAI ◽  
Keitaro KONDO ◽  
Akira URITANI

Author(s):  
Takeo Nishitani ◽  
Yuuki Tanagami ◽  
Sachiko Yoshihashi ◽  
Kazuki Tsuchida ◽  
Atsushi Yamazaki ◽  
...  

Author(s):  
Takeo Nishitani ◽  
Sachiko Yoshihashi ◽  
Kunihiro Ogawa ◽  
Misako Miwa ◽  
Shigeo Matsuyama ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thongchai A. M. Masilela ◽  
Rachel Delorme ◽  
Yolanda Prezado

AbstractVery high energy electrons (VHEEs) represent a promising alternative for the treatment of deep-seated tumors over conventional radiotherapy (RT), owing to their favourable dosimetric characteristics. Given the high energy of the electrons, one of the concerns has been the production of photoneutrons. In this article we explore the consequence, in terms of neutron yield in a water phantom, of using a typical electron applicator in conjunction with a 2 GeV and 200 MeV VHEE beam. Additionally, we evaluate the resulting ambient neutron dose equivalent at various locations between the phantom and a concrete wall. Through Monte Carlo (MC) simulations it was found that an applicator acts to reduce the depth of the dose build-up region, giving rise to lower exit doses but higher entrance doses. Furthermore, neutrons are injected into the entrance region of the phantom. The highest dose equivalent found was approximately 1.7 mSv/Gy in the vicinity of the concrete wall. Nevertheless, we concluded that configurations of VHEEs studied in this article are similar to conventional proton therapy treatments in terms of their neutron yield and ambient dose equivalent. Therefore, a clinical implementation of VHEEs would likely not warrant additional radioprotection safeguards compared to conventional RT treatments.


2021 ◽  
Author(s):  
Veronica Eudave ◽  
Eric Hahn ◽  
Swarvanu Gosh ◽  
Jeff Narkis ◽  
Fabio Conti ◽  
...  

2021 ◽  
Vol 35 (22) ◽  
Author(s):  
Guanglong Chen ◽  
Yunjiu Cao ◽  
Li Ren ◽  
Jiehui Huang ◽  
Jianping He

With the development of femtosecond (fs) laser technology, an fs laser pulse with 10s of Joule, even 100s of Joule energy is available and the focused laser intensity can be expected to induce the pure Coulomb explosion of the cluster with a much larger average radius than before. Meanwhile, the production of gas cluster with an average radius of upto 10s of nanometer has been possible. In this case, it is necessary to reinvestigate the feasibility of 109 n/shot neutron yield for the practical application in the intense fs laser-driven nuclear fusion. In this work, the neutron yield from the explosions of the D2 clusters of 6–20 nm average radius at the 0.5–100 J pulse energy and the CD4 clusters was investigated theoretically. It is found that the optimum neutron yield of 109 n/shot can be obtained at the laser energy and the cluster radius currently available. However, a clustered-gas jet with a large cross-section is demanded to match the proper plasma diameter.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 824
Author(s):  
Marina Bikchurina ◽  
Timofey Bykov ◽  
Dmitrii Kasatov ◽  
Iaroslav Kolesnikov ◽  
Aleksandr Makarov ◽  
...  

A compact accelerator-based neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. An original design tandem accelerator is used to provide a proton beam. The neutron flux is generated as a result of the 7Li(p,n)7Be threshold reaction using the solid lithium target. A beam shaping assembly is applied to convert this flux into a beam of epithermal neutrons with characteristics suitable for BNCT. The BNCT technique is being tested in in vitro and in vivo studies, and dosimetry methods are being developed. Currently, the BNCT technique has entered into clinical practice in the world: after successful clinical trials, two clinics in Japan began treating patients, and four more BNCT clinics are ready to start operating. The neutron source proposed at the Budker Institute of Nuclear Physics served as a prototype for a facility created for a clinic in Xiamen (China). It is planned to equip the National Medical Research Center of Oncology (Moscow, Russia) and National Oncological Hadron Therapy Center (Pavia, Italy) with the same neutron sources. Due to the impending use of an accelerator neutron source for treating patients, the validation of the neutron yield of the 7Li(p,n)7Be reaction in lithium metal targets is required. The theoretical neutron yield has not been evaluated experimentally so far.


Sign in / Sign up

Export Citation Format

Share Document