THE SCREENING FUNCTION OF AN INTERACTING ELECTRON GAS

1966 ◽  
Vol 44 (9) ◽  
pp. 2137-2171 ◽  
Author(s):  
D. J. W. Geldart ◽  
S. H. Vosko

The screening function of an interacting electron gas at high and metallic densities is investigated by many-body perturbation theory. The analysis is guided by a fundamental relation between the compressibility of the system and the zero-frequency small wave-vector screening function (i.e. screening constant). It is shown that the contribution from a graph not included in previous work is essential to obtain the lowest-order correlation correction to the screening constant at high density. Also, this graph gives a substantial contribution to the screening constant at metallic densities. The general problem of choosing a self-consistent set of graphs for calculating the screening function is discussed in terms of a coupled set of integral equations for the propagator, the self-energy, the vertex function, and the screening function. A modification of Hubbard's (1957) form of the screening function is put forward on the basis of these results.

2009 ◽  
Vol 87 (7) ◽  
pp. 817-824 ◽  
Author(s):  
Daniel Hedendahl ◽  
Ingvar Lindgren ◽  
Sten Salomonson

The standard procedure for relativistic many-body perturbation theory (RMBPT) is not relativistically covariant, and the effects of retardation, virtual-electron-positron-pair, and radiative effects (self-energy, vacuum polarisation, and vertex correction) — the so-called QED effects — are left out. The energy contribution from the QED effects can be evaluated by the covariant evolution operator method, which has a structure that is similar to that of RMBPT, and it can serve as a merger between QED and RMBPT. The new procedure makes it, in principle, possible for the first time to evaluate QED effects together with correlation to high order. The procedure is now being implemented, and it has been shown that the effect of electron correlation on first-order QED for He-like neon dominates heavily over second-order QED effects.


1979 ◽  
Vol 70 (9) ◽  
pp. 4086-4090 ◽  
Author(s):  
Marcello Baldo ◽  
Renato Pucci ◽  
Pasquale Tomasello

1998 ◽  
Vol 58 (19) ◽  
pp. 12684-12690 ◽  
Author(s):  
Arno Schindlmayr ◽  
Thomas J. Pollehn ◽  
R. W. Godby

2020 ◽  
Vol 224 ◽  
pp. 424-447
Author(s):  
Marco Vanzini ◽  
Francesco Sottile ◽  
Igor Reshetnyak ◽  
Sergio Ciuchi ◽  
Lucia Reining ◽  
...  

In this contribution, we advocate the possibility of designing auxiliary systems with effective potentials or kernels that target only the specific spectral properties of interest and are simpler than the self-energy of many-body perturbation theory or the exchange–correlation kernel of time-dependent density-functional theory.


1967 ◽  
Vol 45 (9) ◽  
pp. 3139-3161 ◽  
Author(s):  
D. J. W. Geldart

The pair distribution function, in the limit of zero separation, of an interacting electron gas at high and metallic densities is investigated by many-body perturbation theory. It is shown that the usual methods for maintaining self-consistency in approximate calculations violate, in general, the nonnegativity of the pair distribution function. In particular, the Pauli principle yields a rigorous sum rule for the parallel spin density fluctuation propagator which is not satisfied. Upper and lower bounds on one-loop and multiloop contributions to the pair distribution functions are given. These bounds are used to discuss correlation corrections. An improved wave-number dependence is given for Hubbard's (1957) approximation to the screening function and numerical results are given for a simple class of exchange corrections.


Sign in / Sign up

Export Citation Format

Share Document