Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe–Salpeter equation

2018 ◽  
Vol 30 (21) ◽  
pp. 215502 ◽  
Author(s):  
Vafa Ziaei ◽  
Thomas Bredow
Author(s):  
Pooja Basera ◽  
Arunima Singh ◽  
Deepika Gill ◽  
Saswata Bhattacharya

Lead iodide perovskites have attracted considerable interest as promising energy-materials. However, till date, several key electronic properties such as optical properties, effective mass, exciton binding energy and the radiative exciton...


1998 ◽  
Vol 58 (19) ◽  
pp. 12684-12690 ◽  
Author(s):  
Arno Schindlmayr ◽  
Thomas J. Pollehn ◽  
R. W. Godby

1966 ◽  
Vol 44 (9) ◽  
pp. 2137-2171 ◽  
Author(s):  
D. J. W. Geldart ◽  
S. H. Vosko

The screening function of an interacting electron gas at high and metallic densities is investigated by many-body perturbation theory. The analysis is guided by a fundamental relation between the compressibility of the system and the zero-frequency small wave-vector screening function (i.e. screening constant). It is shown that the contribution from a graph not included in previous work is essential to obtain the lowest-order correlation correction to the screening constant at high density. Also, this graph gives a substantial contribution to the screening constant at metallic densities. The general problem of choosing a self-consistent set of graphs for calculating the screening function is discussed in terms of a coupled set of integral equations for the propagator, the self-energy, the vertex function, and the screening function. A modification of Hubbard's (1957) form of the screening function is put forward on the basis of these results.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1014
Author(s):  
Romain N. Soguel ◽  
Andrey V. Volotka ◽  
Dmitry A. Glazov ◽  
Stephan Fritzsche

The redefined vacuum approach, which is frequently employed in the many-body perturbation theory, proved to be a powerful tool for formula derivation. Here, we elaborate this approach within the bound-state QED perturbation theory. In addition to general formulation, we consider the particular example of a single particle (electron or vacancy) excitation with respect to the redefined vacuum. Starting with simple one-electron QED diagrams, we deduce first- and second-order many-electron contributions: screened self-energy, screened vacuum polarization, one-photon exchange, and two-photon exchange. The redefined vacuum approach provides a straightforward and streamlined derivation and facilitates its application to any electronic configuration. Moreover, based on the gauge invariance of the one-electron diagrams, we can identify various gauge-invariant subsets within derived many-electron QED contributions.


1981 ◽  
Vol 36 (12) ◽  
pp. 1361-1366 ◽  
Author(s):  
Michael C. Böhm

The electronic structure of cyclopentadienyl nickel nitrosyl (1) in the ground state as well as the cationic states of 1 are investigated by means of a semiempirical INDO Hamiltonian and many body perturbation theory. It is demonstrated that the nature of the NiNO coupling is largely covalent while the interaction between the 3d center and the cyclopentadienyl ligand is predominantly of ionic type. The ground state MO sequence of the Ni 3d orbitals is 4e2(3dx²-y²/3dxy) below 7e1(3dXz/3dyz) and 15a1(3dz2). The sequence of the ionization potentials is 8e1 (Cp - π) < 15a1<4e2<7e1. The ionization energies have been determined by means of the Green’s function formalism; the self-energy part has been calculated by a second order and a renormalized approximation. Both procedures predict the correct sequence of ionization events.


Author(s):  
Romain N. Soguel ◽  
Andrey V. Volotka ◽  
Dmitry A. Glazov ◽  
Stephan Fritzsche

The redefined vacuum approach, which is frequently employed in the many-body perturbation theory, proved to be a powerful tool for formula derivation. Here, we elaborate this approach within the bound-state QED perturbation theory. In addition to general formulation, we consider the particular example of a single particle (electron or vacancy) excitation with respect to the redefined vacuum. Starting with simple one-electron QED diagrams, we deduce first- and second-order many-electron contributions: screened self-energy, screened vacuum polarization, one-photon exchange, and two-photon exchange. The redefined vacuum approach provides a straightforward and streamlined derivation and facilitates its application to any electronic configuration. Moreover, based on the gauge invariance of the one-electron diagrams, we can identify various gauge-invariant subsets within derived many-electron QED contributions.


Sign in / Sign up

Export Citation Format

Share Document