The 3-D distribution of sources of optical scattering computed from complex-amplitude far-field data

1976 ◽  
Vol 54 (19) ◽  
pp. 1925-1936 ◽  
Author(s):  
D. K. Lam ◽  
H. G. Schmidt-Weinmar ◽  
A. Wouk

We present a fast computer algorithm to solve the scalar inverse scattering problem numerically by inverting a linear transformation which maps a 3-D distribution of scattering sources into the angular distribution of the resultant scattered far field. We show how an approximate solution to the problem can be found in discrete form which leads to non-singular systems of linear equations of a type whose matrix can be inverted readily by fast algorithms.The method uses Born's first approximation and is valid for a slowly varying refractive index: the resultant numerical problem can be solved by a fast algorithm which reduces computing time by ~10−7, storage requirement by ~10−5, as compared with Gaussian elimination applied to 125 000 sample points. With this algorithm, computerized 3-D reconstruction becomes feasible.

Author(s):  
Jianli Xiang ◽  
Guozheng Yan

Abstract This paper is concerned with the inverse scattering problem of time-harmonic elastic waves by a mixed-type scatterer, which is given as the union of an impenetrable obstacle and a crack. We develop the modified factorization method to determine the shape of the mixed-type scatterer from the far field data. However, the factorization of the far field operator $F$ is related to the boundary integral matrix operator $A$, which is obtained in the study of the direct scattering problem. So, in the first part, we show the well posedness of the direct scattering problem by the boundary integral equation method. Some numerical examples are presented at the end of the paper to demonstrate the feasibility and effectiveness of the inverse algorithm.


Author(s):  
C. Labreuche

In a previous paper, I investigated the use (for the inverse scattering problem) of the resonant frequencies and the associated eigen far-fields. I showed that the shape of a sound soft obstacle is uniquely determined by a knowledge of one resonant frequency and one associated eigen far-field. Inverse obstacle scattering problems are ill-posed in the sense that a small error in the measurement may imply a large error in the reconstruction. This is contrary to the idea of continuity. I proved that, by adding some a priori information, the reconstruction becomes continuous. More precisely, continuity holds if we assume that the obstacle lies a fixed and known compact set.The goal of this paper is to extend these results to the case of absorbing obstacles.


1991 ◽  
Vol 34 (2) ◽  
pp. 295-311 ◽  
Author(s):  
Yongzhi Xu

The inverse scattering problem for acoustic waves in shallow oceans are different from that in the spaces of R2 and R3 in the way that the “propagating” far-field pattern can only carry the information from the N +1 propagating modes. This loss of information leads to the fact that the far-field pattern operator is not injective. In this paper, we will present some properties of the far-field pattern operator and use this information to construct an injective far-field pattern operator in a suitable subspace of L2(∂Ω). Based on this construction an optimal scheme for solving the inverse scattering problem is presented using the minimizing Tikhonov functional.


2006 ◽  
Vol 11 (2) ◽  
pp. 123-136 ◽  
Author(s):  
A. G. Akritas ◽  
G. I. Malaschonok ◽  
P. S. Vigklas

Given an m × n matrix A, with m ≥ n, the four subspaces associated with it are shown in Fig. 1 (see [1]). Fig. 1. The row spaces and the nullspaces of A and AT; a1 through an and h1 through hm are abbreviations of the alignerframe and hangerframe vectors respectively (see [2]). The Fundamental Theorem of Linear Algebra tells us that N(A) is the orthogonal complement of R(AT). These four subspaces tell the whole story of the Linear System Ax = y.  So, for example, the absence of N(AT) indicates that a solution always exists, whereas the absence of N(A) indicates that this solution is unique. Given the importance of these subspaces, computing bases for them is the gist of Linear Algebra. In “Classical” Linear Algebra, bases for these subspaces are computed using Gaussian Elimination; they are orthonormalized with the help of the Gram-Schmidt method. Continuing our previous work [3] and following Uhl’s excellent approach [2] we use SVD analysis to compute orthonormal bases for the four subspaces associated with A, and give a 3D explanation. We then state and prove what we call the “SVD-Fundamental Theorem” of Linear Algebra, and apply it in solving systems of linear equations.


2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Zewen Wang ◽  
Xiaoxia Li ◽  
Yun Xia

AbstractThe inverse scattering problem considered in this paper is to reconstruct multiple sound-soft obstacles from one incident wave and its far field pattern. Based on the ideas of the Kirsch–Kress method and the hybrid Newton method, three variant Newton-type methods are developed for reconstructing the shape of multiple obstacles. The proposed hybrid Newton-type methods I and II can choose auxiliary curves adaptively, and do not require them to be contained in the unknown multiple obstacles. The proposed hybrid Newton-type method III is simpler than the hybrid Newton method developed by Kress in terms of computational complexity since it adopts quasi-Newton iterations in numerical reconstructions. Results of numerical examples show that the proposed methods, especially the one with both adaptively choosing auxiliary curves and quasi-Newton iterations, are more efficient and stable for reconstructing multiple obstacles.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4724
Author(s):  
Maria Antonia Maisto ◽  
Mehdi Masoodi ◽  
Giovanni Leone ◽  
Raffaele Solimene ◽  
Rocco Pierri

This paper deals with an inverse scattering problem under a linearized scattering model for a multi-static/multi-frequency configuration. The focus is on the determination of a sampling strategy that allows the reduction of the number of measurement points and frequencies and at the same time keeping the same achievable performance in the reconstructions as for full data acquisition. For the sake of simplicity, a 2D scalar geometry is addressed, and the scattered far-field data are collected. The relevant scattering operator exhibits a singular value spectrum that abruptly decays (i.e., a step-like behavior) beyond a certain index, which identifies the so-called number of degrees of freedom (NDF) of the problem. Accordingly, the sampling strategy is derived by looking for a discrete finite set of data points for which the arising semi-discrete scattering operator approximation can reproduce the most significant part of the singular spectrum, i.e., the singular values preceding the abrupt decay. To this end, the observation variables are suitably transformed so that Fourier-based arguments can be used. The arising sampling grid returns several data that is close to the NDF. Unfortunately, the resulting data points (in the angle-frequency domain) leading to a complicated measurement configuration which requires collecting the data at different spatial positions for each different frequency. To simplify the measurement configuration, a suboptimal sampling strategy is then proposed which, by an iterative procedure, enforces the sampling points to belong to a rectangular grid in the angle-frequency domain. As a result of this procedure, the overall data points (i.e., the couples angle-frequency) actually increase but the number of different angles and frequencies reduce and lead to a measurement configuration that is more practical to implement. A few numerical examples are included to check the proposed sampling scheme.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2087
Author(s):  
Won-Kwang Park

In this study, we consider a sampling-type algorithm for the fast localization of small electromagnetic inhomogeneities from measured far-field pattern data in the limited-aperture inverse scattering problem. For this purpose, we designed an indicator function based on the structure of left- and right-singular vectors of a multistatic response matrix, the elements of which were measured far-field pattern data. We then rigorously investigated the mathematical structure of the indicator function in terms of purely dielectric permittivity and magnetic permeability contrast cases by establishing a relationship with an infinite series of Bessel functions of an integer order of the first kind and a range of incident and observation directions before exploring various intrinsic properties of the algorithm, including its feasibility and limitations. Simulation results with synthetic data corrupted by random noise are presented to support the theoretical results.


1993 ◽  
Vol 36 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Andrzej W. Kȩdzierawski

The inverse scattering problem we consider is to determine the surface impedance of a three-dimensional obstacle of known shape from a knowledge of the far-field patterns of the scattered fields corresponding to many incident time-harmonic plane acoustic waves. We solve this problem by using both the methods of Kirsch-Kress and Colton-Monk.


Sign in / Sign up

Export Citation Format

Share Document