The Effects of Fluid Entry Conditions on the Performance of Vapour-Jet Compressors

Author(s):  
N. Galanis ◽  
G. Faucher ◽  
Nguyen Mau Phung

An earlier one-dimensional frictionless perfect-gas analysis of jet ejectors is generalized to account for phase changes during the expansion process and is used to evaluate the performance of vapour-jet compressors operating with initially saturated freon-12 or n-butane. The results, obtained by numerical solution of the non-linear equations, show better agreement with experimental data than the predictions based on perfect-gas relations and indicate that the performance depends upon several variables which are not accounted for by the perfect-gas model.

1976 ◽  
Vol 157 (2) ◽  
pp. 489-492 ◽  
Author(s):  
I A Nimmo ◽  
G L Atkins

1. Descriptions are given of two ways for fitting non-linear equations by least-squares criteria to experimental data. One depends on solving a set of non-linear simultaneous equations, and the other on Taylor's theorem. 2. It is shown that better parameter estimates result when an equation with two or more non-linear parameters is fitted to all the sets of data simultaneously than when it is fitted to each set in turn.


Author(s):  
Vassilios Pachidis ◽  
Ioannis Templalexis ◽  
Pericles Pilidis

One of the most frequently encountered problems in engineering is dealing with non-linear equations. For example, the solution of the full Radial Equilibrium Equation (REE) in Streamline Curvature (SLC) through-flow methods is a typical case of a scientific analysis associated with a complex mathematical problem that can not be handled analytically. Various schemes are used routinely in scientific studies for the numerical solution of mathematical problems. In simple cases, these methods can be applied in their original form with success. The Newton-Raphson for example is one such scheme, commonly employed in simple engineering problems that require an iterative solution. Frequently however, the analysis of more complex phenomena may fall beyond the range of applicability of ‘textbook’ numerical methods, and may demand the design of more dedicated algorithms for the mathematical solution of a specific problem. These algorithms can be empirical in nature, developed from scratch, or the combination of previously established techniques. In terms of robustness and efficiency, all these different schemes would have their own merits and shortcomings. The success or failure of the numerical scheme applied depends also on the limitations imposed by the physical characteristics of the computational platform used, as well as by the nature of the problem itself. The effects of these constraints need to be assessed and taken into account, so that they can be anticipated and controlled. This manuscript discusses the development, validation and deployment of a convergence algorithm for the fast, accurate and robust numerical solution of the non-linear equations of motion for two-dimensional flow fields. The algorithm is based on a hybrid scheme, combining the Secant and Bisection iteration methods. Although it was specifically developed to address the computational challenges presented by SLC-type of analyses, it can also be used in other engineering problems. The algorithm was developed to provide a mid-of-the-range option between the very efficient but notoriously unstable Newton-Raphson scheme and other more robust, but less efficient schemes, usually employing some sort of Dynamic Convergence Control (DCC). It was also developed to eliminate the large user intervention, usually required by standard numerical methods. This new numerical scheme was integrated into a compressor SLC software and was tested rigorously, particularly at compressor operating regimes traditionally exhibiting convergence difficulties (i.e. part-speed performance). The analysis showed that the algorithm could successfully reach a converged solution, equally robustly but much more efficiently compared to a hybrid Newton-Raphson scheme employing DCC. The performance of these two schemes, in terms of speed of execution, is presented here. Typical error histories and comparisons of simulated results against experimental are also presented in this manuscript for a particular case-study.


Author(s):  
Eyyup Aras

This two-part paper presents an efficient parametric approach to updating workpiece surfaces represented by the Z-map vectors. The methodology is developed for up to 3 1/2 1/2-axis machining in which a tool can be arbitrarily oriented. In calculations the Automatically Programmed Tool (APT)-type milling cutters represented by the natural quadrics, planar and the toroidal surfaces are used. The machining process is simulated through calculating the intersections between the Z-map vectors and the tool envelope surface which is modeled by using a tangency function. Part 1 of this two-part paper presents the methodology for the cutters with natural quadrics and planar surfaces. For those surfaces intersection calculations are performed analytically. The geometric complexity of a torus is higher than those of the natural quadric and planar surfaces. Furthermore if the torus has an arbitrary orientation then the intersection calculations for the torus present great difficulties. In NC machining typically a torus is considered as one of the constituent parts of a cutter. In this case only some parts of the torus envelopes, called contact-envelopes, can intersect with Z-map vectors. For this purpose in Part 2 of this two-part paper an analysis is developed for separating the contact-envelopes from the non-contact envelopes. Then a system of non-linear equations in several variables, obtained from intersecting Z-map vectors with contact envelopes, is transformed into a single variable non-linear function. Later using a nonlinear root finding analysis which guarantees the root(s) in the given interval, those intersections are addressed.


Sign in / Sign up

Export Citation Format

Share Document